Communiqué de presse
L’étrange comportement d’une étoile révèle l’existence d’un trou noir solitaire au cœur d’un amas d’étoiles géant
17 janvier 2018
Grâce à l’instrument MUSE qui équipe le Very Large Telescope de l’ESO au Chili, les astronomes ont découvert une étoile au comportement très étrange au sein de l’amas NGC 3201. Elle semble orbiter autour d’un trou noir invisible dont la masse avoisine les quatre masses solaires – il s’agit du premier trou noir inactif de masse stellaire découvert au sein d’un amas globulaire et du tout premier trou noir détecté au moyen des seuls effets de son attraction gravitationnelle. Cette importante découverte n’est pas sans conséquence sur notre compréhension de la formation de ces amas stellaires, des trous noirs et de l’origine des ondes gravitationnelles.
Les amas globulaires sont de vastes sphères constituées de dizaines de milliers d’étoiles qui orbitent autour de la plupart des galaxies. Ils figurent parmi les systèmes stellaires les plus âgés de l’Univers : leur formation est contemporaine en effet des débuts de la croissance et de l’évolution galactiques. A ce jour, quelque 150 amas gobulaires ont été identifiés au sein de la Voie Lactée.
Un amas particulier situé dans la constellation australe de Vela (Les Voiles) et baptisé NGC 3201 a été étudié au moyen de l’instrument MUSE qui équipe le Very Large Telescope de l’ESO au Chili. Une équipe emmenée par Benjamin Giesers (Université Georg-August de Göttingen, Allemagne) a mis en évidence l’étrange comportement de l’une des étoiles [1] de NGC 3201 – elle oscille d’avant en arrière à plusieurs centaines de milliers de kilomètres par heure, et selon une périodicité de 167 jours [2].
Le comportement de cette étoile intrigua Benjamin Giesers : « Elle orbitait autour de quelque chose d’invisible, dont la masse surpassait les quatre masses solaires – cela ne pouvait être qu’un trou noir ! Le tout premier découvert au sein d’un amas globulaire en observant les seuls effets de son attraction gravitationnelle. »
Bien qu’importante, la relation unissant les trous noirs aux amas globulaires demeure mystérieuse. Leurs masses élevées et leurs âges avancés laissent supposer que ces amas ont produit un grand nombre de trous noirs de masses stellaire – vestiges de l’explosion puis de l’effondrement d’étoiles massives tout au long de la durée de vie de l’amas [3][4].
L’instrument MUSE de l’ESO offre aux astronomes la possibilité de simultanément mesurer les mouvements de milliers d’étoiles lointaines. Avec cette nouvelle découverte, Benjamin Giesers et son équipe ont pour la toute première fois été capables de détecter un trou noir passif au centre d’un amas globulaire – un trou noir qui n’absorbe actuellement aucune matière et n’est entouré d’aucun disque de gaz brillant. Ils ont été en mesure d’estimer la masse du trou noir grâce aux mouvements d’une étoile prise au piège de son énorme attraction gravitationnelle [5].
L’observation de ses propriétés a permis de fixer la masse de l’étoile à quelque 0,8 masse solaire, et la masse de sa mystérieuse contrepartie à environ 4,36 masses solaires – ce qui permet de l’identifier presque certainement à un trou noir [6].
Les récentes détections de sources de rayonnements radio et X au sein des amas globulaires, tout comme la détection d’ondes gravitationnelles résultant de la fusion de deux trous noirs de masses stellaires, suggèrent que ces trous noirs de modestes dimensions pourraient être bien plus nombreux qu’imaginé au sein des amas globulaires.
Benjamin Giesers de conclure : « Récemment encore, nous pensions que la plupart des trous noirs disparaissaient des amas globulaires en un laps de temps très court, et que de tels systèmes n’existaient même pas ! Ce n’est manifestement pas le cas – nous avons pour la toute première fois détecté les effets gravitationnels d’un trou noir de masse stellaire au sein d’un amas globulaire. Cette découverte permet d’affiner notre compréhension de la formation des amas globulaires ainsi que l’évolution des trous noirs et des systèmes binaires – ce qui est essentiel pour la compréhension des sources d’ondes gravitationnelles. »
Notes
[1] L’étoile découverte achève sa phase de séquence principale. Après avoir épuisé ses réserves d’hydrogène, elle s’apprête à devenir une géante rouge.
[2]Un vaste sondage des 25 amas globulaires situés en périphérie de la Voie Lactée est actuellement en cours, au moyen de l’instrument MUSE de l’ESO et avec le soutien du consortium MUSE. Il fournira aux astronomes les spectres des 600 à 27 000 étoiles peuplant chaque amas. L’étude inclut l’analyse de la “vitesse radiale” des étoiles individuelles – la vitesse à laquelle elles se déplacent en direction ou à l’opposé de la Terre, le long de la ligne de visée de l’observateur. Les mesures de vitesses radiales permettront de déterminer les orbites des étoiles ainsi que les propriétés de tout objet massif autour duquel elles sont susceptibles d’orbiter.
[3] En l’absence de formation continue d’étoiles, comme c’est le cas dans les amas globulaires, les trous noirs de masse stellaire deviennent rapidement les objets les plus massifs. En règle générale, les trous noirs de masse stellaire des amas globulaires sont quelque quatre fois plus massifs que les étoiles périphériques de faible masse. Des théories récentes stipulent que les trous noirs constituent un noyau dense à l’intérieur de l’amas, qui tend à s’éloigner du reste de la matière globulaire. Des mouvements au centre de l’amas sont ensuite supposés éjecter la majorité des trous noirs, seul quelques-uns d’entre eux survivant, des milliards d’années durant.
[4] Les trous noirs de masse stellaire – ou collapsars – se forment lorsque des étoiles massives meurent, s’effondrant sous leur propre poids et explosant sous la forme de puissantes hypernovae. En résulte un trou noir doté d’une masse sensiblement inférieure à celle de l’ancienne étoile, comprise entre plusieurs masses solaires et plusieurs dizaines de masses solaires.
[5] En raison de leur intense gravité, aucune lumière ne peut s’échapper des trous noirs. La première méthode de détection repose donc sur l’observation des rayonnements X ou radio émis par la matière chaude environnante. Toutefois, lorsqu’un trou noir n’interagit pas avec la matière chaude ni n’accumule de masse ni n’émet le moindre rayonnement, comme c’est le cas ici, le trou noir est “inactif” et invisible. Une autre méthode de détection est alors requise.
[6] L’objet sombre de ce système binaire ne peut faire l’objet d’une observation directe. En conséquence, d’autres explications, beaucoup moins pertinentes toutefois, peuvent être avancées. Ce système pourrait par exemple être assimilé à un système stellaire triple constitué de deux étoiles à neutrons étroitement liées l’une à l’autre, autour desquelles orbite l’étoile observée. Ce scénario présuppose que chaque étoile à neutrons soit dotée d’une masse équivalant à plus de deux masses solaires, un système binaire encore non observé à ce jour.
Plus d'informations
Ce travail de recherche a fait l’objet d’un article intitulé “A detached stellar-mass black hole candidate in the globular cluster NGC 3201”, par B. Giesers et al., à paraître au sein de la revue Monthly Notices of the Royal Astronomical Society.
L’équipe se sompose de Benjamin Giesers (Université Georg-August de Göttingen, Allemagne), Stefan Dreizler (Université Georg-August de Göttingen, Allemagne), Tim-Oliver Husser (Université Georg-August de Göttingen, Allemagne), Sebastian Kamann (Université Georg-August de Göttingen, Allemagne; Université John Moores de Liverpool, Liverpool, Royaume-Uni), Guillem Anglada Escudé (Université Queen Mary de Londres, Royaume-Uni), Jarle Brinchmann (Observatoire de Leiden, Université de Leiden, Leiden, Pays-Bas; Université de Porto, CAUP, Porto, Portugal), C. Marcella Carollo (Institut de Technologie Fédéral Suisse, ETH, Zurich, Suisse) Martin M. Roth (Institut Leibniz dédié à l’Astrophysique Potsdam, Potsdam, Allemagne), Peter M. Weilbacher (Institut Leibniz dédié à l’Astrophysique Potsdam, Potsdam, Allemagne) et Lutz Wisotzki (Institut Leibniz dédié à l’Astrophysique Potsdam, Potsdam, Allemagne).
L'ESO est la première organisation intergouvernementale pour l'astronomie en Europe et l'observatoire astronomique le plus productif au monde. L'ESO est soutenu par 15 pays : l'Allemagne, l'Autriche, la Belgique, le Brésil, le Danemark, l'Espagne, la Finlande, la France, l'Italie, les Pays-Bas, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L'ESO conduit d'ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l'astronomie au sol qui permettent aux astronomes de faire d'importantes découvertes scientifiques. L'ESO joue également un rôle de leader dans la promotion et l'organisation de la coopération dans le domaine de la recherche en astronomie. L'ESO gère trois sites d'observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l'ESO exploite le VLT « Very Large Telescope », l'observatoire astronomique observant dans le visible le plus avancé au monde et deux télescopes dédiés aux grands sondages. VISTA fonctionne dans l'infrarouge. C'est le plus grand télescope pour les grands sondages. Et, le VLT Survey Telescope (VST) est le plus grand télescope conçu exclusivement pour sonder le ciel dans la lumière visible. L'ESO est le partenaire européen d'ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L'ESO est actuellement en train de programmer la réalisation d'un télescope géant (ELT pour Extremely Large Telescope) de la classe des 39 mètres qui observera dans le visible et le proche infrarouge. L'ELT sera « l'œil le plus grand au monde tourné vers le ciel.
Liens
Contacts
Benjamin Giesers
Georg-August-Universität Göttingen
Göttigen, Germany
Courriel: giesers@astro.physik.uni-goettingen.de
Stefan Dreizler
Georg-August-Universität Göttingen
Göttigen, Germany
Courriel: dreizler@astro.physik.uni-goettingen.de
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tél: +49 89 3200 6655
Mobile: +49 151 1537 3591
Courriel: rhook@eso.org
Joerg Gasser (contact presse pour la Suisse)
Réseau de diffusion scientifique de l'ESO
Courriel: eson-switzerland@eso.org
A propos du communiqué de presse
Communiqué de presse N°: | eso1802fr-ch |
Nom: | NGC 3201 |
Type: | Milky Way : Star : Evolutionary Stage : Black Hole Milky Way : Star : Grouping : Cluster : Globular |
Facility: | Very Large Telescope |
Instruments: | MUSE |
Science data: | 2018MNRAS.475L..15G |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.