Nota de Imprensa
Melhor vista de sempre de nuvem poeirenta a passar pelo buraco negro situado no centro galáctico
Observações do VLT confirmam que a nuvem G2 sobreviveu a encontro próximo e que se trata de um objeto compacto
26 de Março de 2015
As melhores observações conseguidas até à data da nuvem de gás poeirenta G2 confirmam que este objeto teve a sua aproximação máxima ao buraco negro supermassivo que se encontra no centro da Via Láctea em maio de 2014 e que sobreviveu à experiência. Os novos resultados obtidos com o Very Large Telescope do ESO mostram que o objeto parece não ter sido significativamente esticado e que é muito compacto. Trata-se muito provavelmente uma estrela jovem com um núcleo massivo que ainda se encontra a acretar material. O buraco negro propriamente dito não mostrou ainda nenhum sinal de aumento de atividade.
Um buraco negro supermassivo com uma massa de quatro milhões de vezes a massa do Sol situa-se no coração da Nossa Via Láctea. Em sua órbita encontra-se um pequeno grupo de estrelas brilhantes e adicionalmente foi descoberta uma nuvem poeirenta bastante enigmática, conhecida por G2, que foi observada a cair em direção ao buraco negro nos últimos anos. Foi previsto que a aproximação máxima ocorresse em maio de 2014.
Pensou-se que as enormes forças de maré nesta região de gravidade extremamente elevada desfizessem a nuvem e a dispersassem ao longo da sua órbita. Algum deste material alimentaria o buraco negro, levando a explosões repentinas que mostrariam como o “monstro” estaria a “apreciar a sua refeição”. Para estudar estes eventos únicos, a região do centro galáctico foi observada cuidadosamente nos últimos anos por muitas equipas que utilizaram os maiores telescópios de todo o mundo.
Uma equipa liderada por Andreas Eckart (Universidade de Colónia, Alemanha) observou a região com o auxílio do Very Large Telescope do ESO (VLT) [1] durante muitos anos, incluindo durante o período crítico de fevereiro a setembro de 2014, ou seja mesmo antes e depois do evento da maior aproximação de maio de 2014. Estas novas observações são consistentes com observações anteriores obtidas com o Telescópio Keck no Hawaii [2].
As imagens no infravermelho, radiação emitida pelo hidrogénio brilhante, mostram que a nuvem se manteve compacta antes e depois da aproximação máxima, ou seja, durante todo o trajecto que a levou a contornar o buraco negro.
Para além de fornecer imagens muito nítidas, o instrumento SINFONI montado no VLT separa também a radiação nas suas componentes de cor infravermelhas e portanto permite estimar a velocidade da nuvem [3]. Antes da aproximação máxima, a nuvem estava a afastar-se da Terra a uma velocidade de cerca de dez milhões de quilómetros por hora e depois de ter contornado o buraco negro, estava a aproximar-se de nós a cerca de doze milhões de quilómetros/hora.
Florian Peissker, um estudante de doutoramento na Universidade de Colónia, Alemanha, que fez muitas das observações, comenta: “Estar no telescópio e ver os dados a chegar em tempo real foi uma experiência fascinante,” e Monica Valencia-S., uma investigadora em pós-doutoramento, também da Universidade de Colónia, que trabalhou na difícil redução dos dados, acrescenta: “Foi extraordinário ver que o brilho da nuvem poeirenta se manteve compacto antes e depois da maior aproximação ao buraco negro.”
Embora observações anteriores tivessem sugerido que o objeto G2 estava a ficar esticado, as novas observações não mostram evidências de que a nuvem tenha ficado significativamente espalhada, não mostrando a nuvem visivelmente estendida, nem mostrando uma maior dispersão nas velocidades.
Para além das observações feitas com o instrumento SINFONI, a equipa fez também uma série de medições da polarização da radiação vinda da região do buraco negro supermassivo usando o instrumento NACO montado no VLT. Estas observações, as melhores deste tipo obtidas até à data, revelam que o comportamento do material que está a ser acretado pelo buraco negro é muito estável e que, pelo menos até agora, não foi alterado pela chegada de material da nuvem G2.
A resiliência da nuvem poeirenta aos efeitos de maré gravitacionais extremos existentes próximo do buraco negro sugere fortemente que este material está a rodear um objeto denso com um núcleo massivo, não se tratando de uma nuvem a flutuar livremente. Este facto é igualmente apoiado pela ausência, até agora, de evidências de que este material esteja a alimentar o monstro central, o que levaria a explosões repentinas e aumento de atividade.
Andreas Eckart sumariza os novos resultados: “Vimos todos os dados recentes e em particular os referentes ao período de 2014, altura em que se deu a maior aproximação ao buraco negro. Não podemos confirmar que a fonte tenha sido esticada de modo significativo. O objeto não se comporta de modo nenhum como uma nuvem de poeira sem núcleo. Pensamos que se trata sim de uma estrela jovem ainda envolta em poeira.”
Notas
[1] Estas observações são muito difíceis de executar uma vez que a região se encontra escondida por trás de nuvens espessas de poeira, daí fazerem-se observações no infravermelho. Adicionalmente, os eventos ocorrem muito próximo do buraco negro, o que requer óptica adaptativa para termos imagens suficientemente nítidas. A equipa utilizou o instrumento SINFONI montado no Very Large Telescope do ESO, tendo monitorizado também o comportamento da região do buraco negro central em radiação polarizada com o auxílio do instrumento NACO.
[2] As observações do VLT são mais nítidas (uma vez que são feitas a comprimentos de onda menores) e têm também medições adicionais de velocidade obtidas com o SINFONI e medições de radiação polarizada obtidas com o instrumento NACO.
[3] Uma vez que a nuvem poeirenta se move relativamente à Terra - afastando-se da Terra antes da maior aproximação ao buraco negro e aproximando-se dela depois - o efeito Doppler faz variar o comprimento de onda observado. Estas variações em comprimento de onda podem ser medidas com o auxílio de um espectrógrafo sensível tal como o instrumento SINFONI montado no VLT. Podem também ser usadas para medir a dispersão das velocidades do material que seria esperada se a nuvem se estendesse ao longo da sua órbita de maneira significativa, como foi alegado anteriormente.
Informações adicionais
Este trabalho foi descrito num artigo científico intitulado “Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole” de M. Valencia-S. et al., que foi publicado na revista da especialidade Astrophysical Journal Letters.
A equipa é composta por: M. Valencia-S. (Physikalisches Institut der Universität zu Köln, Alemanha), A. Eckart (Universität zu Köln; Max-Planck-Institut für Radioastronomie, Bonn, Alemanha [MPIfR]), M. Zajacek (Universität zu Köln; MPIfR; Instituto Astronómico da Academia de Ciências de Praga, República Checa), F. Peissker (Universität zu Köln), M. Parsa (Universität zu Köln), N. Grosso (Observatoire Astronomique de Strasbourg, França), E. Mossoux (Observatoire Astronomique de Strasbourg), D. Porquet (Observatoire Astronomique de Strasbourg), B. Jalali (Universität zu Köln), V. Karas (Instituto Astronómico da Academia de Ciências de Praga), S. Yazici (Universität zu Köln), B. Shahzamanian (Universität zu Köln), N. Sabha (Universität zu Köln), R. Saalfeld (Universität zu Köln), S. Smajic (Universität zu Köln), R. Grellmann (Universität zu Köln), L. Moser (Universität zu Köln), M. Horrobin (Universität zu Köln), A. Borkar (Universität zu Köln), M. García-Marín (Universität zu Köln), M. Dovciak (Instituto Astronómico da Academia de Ciências de Praga), D. Kunneriath (Instituto Astronómico da Academia de Ciências de Praga), G. D. Karssen (Universität zu Köln), M. Bursa (Instituto Astronómico da Academia de Ciências de Praga), C. Straubmeier (Universität zu Köln) e H. Bushouse (Space Telescope Science Institute, Baltimore, Maryland, EUA).
O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronómico mais produtivo do mundo. O ESO é financiado por 16 países: Alemanha, Áustria, Bélgica, Brasil, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polónia, Portugal, Reino Unido, República Checa, Suécia e Suíça, assim como pelo Chile, o país de acolhimento. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronómicos terrestres de ponta, que possibilitam aos astrónomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronómica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera o Very Large Telescope, o observatório astronómico óptico mais avançado do mundo e dois telescópios de rastreio. O VISTA, o maior telescópio de rastreio do mundo que trabalha no infravermelho e o VLT Survey Telescope, o maior telescópio concebido exclusivamente para mapear os céus no visível. O ESO é um parceiro principal no ALMA, o maior projeto astronómico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o European Extremely Large Telescope (E-ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.
Links
Contactos
Andreas Eckart
University of Cologne
Cologne, Germany
Email: eckart@ph1.uni-koeln.de
Monica Valencia-S.
University of Cologne
Cologne, Germany
Email: mvalencias@ph1.uni-koeln.de
Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Telm: +49 151 1537 3591
Email: rhook@eso.org
Margarida Serote (Contacto de imprensa em Portugal)
Rede de Divulgação Científica do ESO
e Instituto de Astrofísica e Ciências do Espaço,
Tel: +351 964951692
Email: eson-portugal@eso.org
Sobre a Nota de Imprensa
Nº da Notícia: | eso1512pt |
Nome: | Sgr A* |
Tipo: | Milky Way : Galaxy : Component : Central Black Hole |
Facility: | Very Large Telescope |
Instrumentos: | SINFONI |
Science data: | 2015ApJ...800..125V |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.