Komunikat prasowy

Ultrachłodny karzeł i siedem planet

W wyjątkowo bogatym systemie planetarnym znaleziono planety wielkości Ziemi i z przyjemną temperaturą

22 lutego 2017

Astronomowie znaleźli system z siedmioma planetami wielkości Ziemi, położony zaledwie 40 lat świetlnych od nas. Do okrycia użyto teleskopów naziemnych i kosmicznych, w tym - należącego do ESO - Bardzo Dużego Teleskopu (VLT). Wszystkie planety wykryto, gdy przechodziły przed swoją gwiazdą, ultrachłodnym karłem znanym jako TRAPPIST-1. Według publikacji, która ukaże się dzisiaj w czasopiśmie „Nature”, trzy planety są położone w ekosferze i mogą posiadać oceany wody na swoich powierzchniach, co zwiększa szanse na to, iż ten system planetarny może być siedliskiem dla życia. Układ ma także największą liczbę planet wielkości Ziemi, spośród znalezionych do tej pory, a także największą liczbę światów mogących posiadać ciekłą wodę na powierzchni.

Astronomowie korzystający z teleskopu TRAPPIST–South w Obserwatorium La Silla, Very Large Telescope (VLT) w Obserwatorium Paranal (należącego do ESO) i Kosmicznego Teleskopu Spitzera (należącego do NASA), a także z innych teleskopów na całym świecie [1], potwierdzili istnienie co najmniej siedmiu małych planet krążących wokół chłodnego czerwonego karła TRAPPIST-1. Wszystkie te planety, nazwane TRAPPIST-1 b, c, d, e, f, g oraz h, w kolejności rosnącej odległości od gwiazdy, mają rozmiary podobne do Ziemi [3].

Obserwacje osłabień światła gwiazdy spowodowane przez każdą z siedmiu planet podczas przechodzenia przed gwiazdą — co określane jest jako "tranzyt" — pozwoliły astronomom ustalić informacje o rozmiarach planet, ich budowie i orbitach [4]. Okazało się, że co najmniej sześć wewnętrznych planet jest porównywalnych do Ziemi, zarówno pod względem rozmiarów, jak i temperatury.

Główny autor publikacji, Michaël Gillon ze STAR Institute na University of Liège w Belgii, jest zadowolony z odkrycia: To niesamowity system planetarny — nie tylko dlatego, że znaleźliśmy tak wiele planet, ale ponieważ wszystkie one są zaskakująco podobne rozmiarami do Ziemi!”

Z masą zaledwie 8% masy Słońca, TRAPPIST-1 jest bardzo mała w kategorii gwiazd — marginalnie większa niż planeta Jowisz — i chociaż świeci blisko nas, w konstelacji Wodnika, wydaje się bardzo słaba. Astronomowie przypuszczali, że tego typu małe gwiazdy mogą posiadać wiele planet wielkości Ziemi na ciasnych orbitach, co by czyniło je obiecującymi celami w poszukiwaniach życia pozaziemskiego, ale TRAPPIST-1 jest pierwszym odkrytym tego typu systemem.

Współautor publikacji, Amaury Triaud, wyjaśnia: Energia wypromieniowywana z małej gwiazdy, takiej jak TRAPPIST-1, jest znacznie słabsza niż ze Słońca. Planety misuałyby mieć orbity znacznie bliższe niż w Układzie Słonecznym, jeśli miałaby na nich występować woda na powierzchni. Na szczęście wydaje się, że tego typu zwartą konfigurację właśnie widzimy wokół TRAPPIST-1!”

Zespół badawczy ustalił, że wszystkie planety w tym systemie są podobne rozmiarami do Ziemi i Wenus w Układzie Słonecznym, albo nieco mniejsze. Wyznaczenia gęstości sugerują, że co najmniej sześć wewnętrznych planet jest prawdopodobnie skalistych.

Orbity planet są niewiele większe niż w systemie galileuszowych księżyców Jowisza i znacznie mniejsze niż orbita Merkurego wokół Słońca. Jednak mały rozmiar i niska temperatura TRAPPIST-1 oznacza, że ilość energii dostarczanej planetom jest podobna do otrzymywanej przez wewnętrzne planety Układu Słonecznego. TRAPPIST-1 c, d oraz f otrzymują podobne ilości energii co odpowiednio Wenus, Ziemia i Mars.

Wszystkie siedem planet odkrytych w tym systemie może potencjalnie posiadać ciekłą wodę na swoich powierzchniach, ale odległości orbitalne czynią niektóre z nich lepszymi kandydatkami niż pozostałe. Modele klimatyczne sugerują, że najbardziej wewnętrzne planety, TRAPPIST-1 b, c oraz d, prawdopodobnie są zbyt gorące, aby mieć wodę w stanie ciekłym, z wyjątkiem być może małych fragmentów swoich powierzchni. Odległość orbitalna najbardziej zewnętrznej planety, TRAPPIST-1 h, jest niepotwierdzona, ale przypuszczalnie znajduje się zbyt daleko i jest zbyt zimna na wodę w stanie ciekłym — zakładając, że nie zachodzą alternatywne procesy ją ogrzewające [5]. Jednak TRAPPIST-1 e, f oraz g stanowią Świętego Graala łowców planet, ponieważ krążą w ekosferze i mogą posiadać wodne oceany na powierzchni [6].

Nowe odkrycie czyni system TRAPPIST-1 bardzo ważnym celem dla przyszłych badań. Kosmiczny Teleskop Hubble’a jest już używany do poszukiwania atmosfer wokół planet, a członek zespołu badawczego, Emmanuël Jehin, ekscytuje się przyszłymi możliwościami: Nadchodząca generacja teleskopów, takich jak budowany przez ESO Ekstremalnie Wielki Teleskop Europejski oraz budowany przez NASA/ESA/CSA Kosmiczny Teleskop Jamesa Webba, spowoduje, że będziemy w stanie szukać wody, a być może nawet oznak życia na tych światach.”

Uwagi

[1] Oprócz Kosmicznego Teleskopu Spitzera (należącego do NASA) badacze użyli także wielu instrumentów naziemnych: TRAPPIST–South w Obserwatorium La Silla (należącym do ESO) w Chile, HAWK-I na Bardzo Dużym Teleskopie (należącym do ESO) w Chile, TRAPPIST–North w Maroku, 3,8-metrowego UKIRT na Hawajach, 2-metrowego teleskopu Liverpool i 4-metrowego Teleskopu Williama Herschela na La Palma na Wyspach Kanaryjskich oraz 1-metrowego teleskopu SAAO w RPA.

[2] TRAPPIST–South (TRAnsiting Planets and PlanetesImals Small Telescope–South) jest belgijskim 0,6-metrowym teleskopem robotycznym, należącym do University of Liège i pracującym w Obserwatorium La Silla w Chile. Większość swojego czasu spędza na monitorowaniu światła od około 60 najbliższych ultrachłodnych karłów i brązowych karłów („gwiazd”, które nie mają wystarczająco dużej masy, aby rozpocząć trwałe reakcje fuzji jądrowej w swoich wnętrzach), poszukując dowodów na tranzyty planet. TRAPPIST–South, a także bliźniaczy TRAPPIST–North, są prekursorami systemu SPECULOOS, instalowanego obecnie w Obserwatorium Paranal.

[3] W pierwszej połowie 2016 roku zespół astronomów, również kierowany przez Michaëla Gillona, ogłosił odkrycie trzech planet wokół TRAPPIST-1. Zintensyfikowano potem obserwacje, głównie ze względu na znaczący potrójny tranzyt, który zaobserwowano instrumentem HAWK-I na teleskopie VLT. Tranzyt ten pokazał wyraźnie, że gwiazdę okrąża przynajmniej jeszcze jedna nieznana planeta. Historyczna krzywa blasku pokazuje po raz pierwszy trzy planety o wielkości i temperaturze ziemskiej, z których dwie znajdują się w ekosferze, przechodzące przed swoją gwiazdą w tym samym czasie!

[4] Jest to jedna z podstawowych metod, których astronomowie używają do identyfikowania istnienia planet wokół gwiazd. Obserwują światło pochodzące od gwiazdy, aby sprawdzić czy jest blokowane przez planetę przechodzącą przed swoją gwiazdą macierzystą na linii widzenia z Ziemi — jak mówią astronomowie: dokonującą tranzytu. Jeśli planeta okrąża swoją gwiazdę, spodziewamy się regularnych, niewielkich spadków jasności gwiazdy w momentach gdy przechodzi przed nią planeta.

[5] Tego typu procesy mogą obejmować rozgrzewanie pływowe, w którym grawitacyjne oddziaływanie TRAPPIST-1 powoduje, że planeta okresowo deformuje się, co prowadzi do wewnętrznych sił tarcia i generowania ciepła. To właśnie ten proces stoi za aktywnym wulkanizmem na jowiszowym księżycu Io. Jeśli TRAPPIST-1 h zachowała pierwotną, bogatą w wodór atmosferę, tempo utraty ciepła może być bardzo małe.

[6] Odkrycie reprezentuje także największy łańcuch egzoplanet krążących prawie w rezonansie ze sobą. Astronomowie starannie zmierzyli jak długo każdej planecie zajmuje pokonanie całej orbity dookoła — czyli okres obiegu — a następnie obliczyli stosunki okresów każdej z planet i jej kolejnej, odleglejszej sąsiadki. Najbardziej wewnętrzne sześć planet ma stosunki okresów bardzo bliskie prostym proporcjom typu 5:3 lub 3:2. Oznacza to, że planety najprawdopodobniej uformowały się dalej od swojej gwiazdy, a następnie przemieściły się do wnętrza układu, do obecnej konfiguracji. Jeśli tak było, mogą być bogatymi w gazy światami o małej gęstości, z lodowymi powierzchniami lub atmosferami.

Więcej informacji

Wyniki badań zaprezentowano w artykule pt. „Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1”, M. Gillon et al., który ukaże się w czasopiśmie Nature.

Skład zespołu badawczego: M. Gillon (Université de Liège, Liège, Belgia), A. H. M. J. Triaud (Institute of Astronomy, Cambridge, Wielka Brytania), B.-O. Demory (University of Bern, Bern, Szwajcaria; Cavendish Laboratory, Cambridge, Wielka Brytania), E. Jehin (Université de Liège, Liège, Belgia), E. Agol (University of Washington, Seattle, USA; NASA Astrobiology Institute's Virtual Planetary Laboratory, Seattle, USA), K. M. Deck (California Institute of Technology, Pasadena, CA, USA), S. M. Lederer (NASA Johnson Space Center, Houston, USA), J. de Wit (Massachusetts Institute of Technology, Cambridge, MA, USA), A. Burdanov (Université de Liège, Liège, Belgia), J. G. Ingalls (California Institute of Technology, Pasadena, California, USA), E. Bolmont (University of Namur, Namur, Belgium; Laboratoire AIM Paris-Saclay, CEA/DRF - CNRS - Univ. Paris Diderot - IRFU/SAp, Centre de Saclay, Francja), J. Leconte (Univ. Bordeaux, Pessac, Francja), S. N. Raymond (Univ. Bordeaux, Pessac, Francja), F. Selsis (Univ. Bordeaux, Pessac, Francja), M. Turbet (Sorbonne Universités, Paris, Francja), K. Barkaoui (Oukaimeden Observatory, Marrakesh, Maroko), A. Burgasser (University of California, San Diego, California, USA), M. R. Burleigh (University of Leicester, Leicester, Wielka Brytania), S. J. Carey (California Institute of Technology, Pasadena, CA, USA), A. Chaushev (University of Leicester, Wielka Brytania), C. M. Copperwheat (Liverpool John Moores University, Liverpool, Wielka Brytania), L. Delrez (Université de Liège, Liège, Belgia; Cavendish Laboratory, Cambridge, Wielka Brytania), C. S. Fernandes (Université de Liège, Liège, Belgia), D. L. Holdsworth (University of Central Lancashire, Preston, Wielka Brytania), E. J. Kotze (South African Astronomical Observatory, Kapsztad, RPA), V. Van Grootel (Université de Liège, Liège, Belgia), Y. Almleaky (King Abdulaziz University, Jeddah, Arabia Saudyjska; King Abdullah Centre for Crescent Observations and Astronomy, Makkah Clock, Arabia Saudyjska), Z. Benkhaldoun (Oukaimeden Observatory, Marrakesz, Maroko), P. Magain (Université de Liège, Liège, Belgia) oraz D. Queloz (Cavendish Laboratory, Cambridge, Wielka Brytania; Astronomy Department, Geneva University, Szwajcaria).

ESO jest wiodącą międzyrządową organizacją astronomiczną w Europie i najbardziej produktywnym obserwatorium astronomicznym na świecie. Wspiera je 16 krajów: Austria, Belgia, Brazylia, Czechy, Dania, Finlandia, Francja, Hiszpania, Holandia, Niemcy, Polska, Portugalia, Szwajcaria, Szwecja, Wielka Brytania oraz Włochy. ESO prowadzi ambitne programy dotyczące projektowania, konstrukcji i użytkowania silnych naziemnych instrumentów obserwacyjnych, pozwalając astronomom na dokonywanie znaczących odkryć naukowych. ESO odgrywa wiodącą rolę w promowaniu i organizowaniu współpracy w badaniach astronomicznych. ESO zarządza trzema unikalnymi, światowej klasy obserwatoriami w Chile: La Silla, Paranal i Chajnantor. W Paranal ESO posiada teleskop VLT (Very Large Telescope - Bardzo Duży Teleskop), najbardziej zaawansowane na świecie astronomiczne obserwatorium w świetle widzialnym oraz dwa teleskopy do przeglądów. VISTA pracuje w podczerwieni i jest największym na świecie instrumentem do przeglądów nieba, natomiast VLT Survey Telescope to największy teleskop dedykowany przeglądom nieba wyłącznie w zakresie widzialnym. ESO jest głównym partnerem ALMA, największego istniejącego projektu astronomicznego. Z kolei na Cerro Armazones, niedaleko Paranal, ESO buduje 39-metrowy teleskop E-ELT (European Extremely Large Telescope - Ekstremalnie Wielki Teleskop Europejski), który stanie się “największym okiem świata na niebo”.

Linki

Kontakt

Michaël Gillon
University of Liege
Liege, Belgium
Tel.: +32 43 669 743
Tel. kom.: +32 473 346 402
E-mail: michael.gillon@ulg.ac.be

Amaury Triaud
Kavli Exoplanet Fellow, University of Cambridge
Cambridge, United Kingdom
Tel.: +44 1223 766 690
E-mail: aht34@cam.ac.uk

Emmanuël Jehin
University of Liège
Liège, Belgium
Tel.: +32 495237298
E-mail: ejehin@ulg.ac.be

Brice-Olivier Demory
University of Bern
Bern, Switzerland
Tel.: +41 31 631 51 57
Tel. kom.: +44 78 66 476 486
E-mail: brice.demory@csh.unibe.ch

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Tel. kom.: +49 151 1537 3591
E-mail: rhook@eso.org

Krzysztof Czart (Kontakt dla mediów Polska)
Sieć Popularyzacji Nauki ESO oraz Urania - Postępy Astronomii
Toruń, Polska
Tel.: +48 513 733 282
E-mail: eson-poland@eso.org

Śledź ESO w mediach społecznościowych

Jest to tłumaczenie Komunikatu prasowego ESO eso1706

O komunikacie

Komunikat nr:eso1706pl
Nazwa:2MASS J23062928-0502285, TRAPPIST-1
Typ:Milky Way : Star : Circumstellar Material : Planetary System
Facility:Spitzer Space Telescope, TRAnsiting Planets and PlanetesImals Small Telescope–South, Very Large Telescope
Science data:2017Natur.542..456G

Zdjęcia

Artystyczna wizja systemu planetarnego TRAPPIST-1
Artystyczna wizja systemu planetarnego TRAPPIST-1
Porównanie systemu TRAPPIST-1 z wewnętrznym Układem Słonecznym i z księżycami galileuszowymi Jowisza
Porównanie systemu TRAPPIST-1 z wewnętrznym Układem Słonecznym i z księżycami galileuszowymi Jowisza
Porównanie systemu TRAPPIST-1 z wewnętrznym Układem Słonecznym i z księżycami galileuszowymi Jowisza
Porównanie systemu TRAPPIST-1 z wewnętrznym Układem Słonecznym i z księżycami galileuszowymi Jowisza
Porównanie rozmiarów planet w systemie TRAPPIST-1 z obiektami w Układzie Słonecznym
Porównanie rozmiarów planet w systemie TRAPPIST-1 z obiektami w Układzie Słonecznym
Krzywa blasku TRAPPIST-1 - osłabienia blasku podczas tranzytów planet
Krzywa blasku TRAPPIST-1 - osłabienia blasku podczas tranzytów planet
Orbity siedmiu planet wokół TRAPPIST-1
Orbity siedmiu planet wokół TRAPPIST-1
Obserwacje VLT: krzywa zmian blasku TRAPPIST-1 podczas potrójnego tranzytu z 11 grudnia 2015 r.
Obserwacje VLT: krzywa zmian blasku TRAPPIST-1 podczas potrójnego tranzytu z 11 grudnia 2015 r.
Krzywe blasku w trakcie tranzytów siedmiu planet TRAPPIST-1
Krzywe blasku w trakcie tranzytów siedmiu planet TRAPPIST-1
Porównanie systemu TRAPPIS-1 i wewnętrznego Układu Słonecznego
Porównanie systemu TRAPPIS-1 i wewnętrznego Układu Słonecznego
Ultrachłodny karzeł TRAPPIST-1 w gwiazdozbiorze Wodnika
Ultrachłodny karzeł TRAPPIST-1 w gwiazdozbiorze Wodnika
Porównanie pomiędzy Słońcem, a ultrachłodnym karłem TRAPPIST-1
Porównanie pomiędzy Słońcem, a ultrachłodnym karłem TRAPPIST-1
Wizualizacja widoku z planety w systemie TRAPPIST-1
Wizualizacja widoku z planety w systemie TRAPPIST-1
Artystyczne wizualizacje planet w systemie TRAPPIST-1 i skalistych planet Układu Słonecznego
Artystyczne wizualizacje planet w systemie TRAPPIST-1 i skalistych planet Układu Słonecznego
Artystyczna wizja systemu TRAPPIST-1
Artystyczna wizja systemu TRAPPIST-1
Porównanie planet układu TRAPPIST-1
Porównanie planet układu TRAPPIST-1
Siedem planet krążących wokół ultrachłodnego karła TRAPPIST-1
Siedem planet krążących wokół ultrachłodnego karła TRAPPIST-1
Artystyczna wizja widoku z odległej planety w systemie TRAPPIST-1
Artystyczna wizja widoku z odległej planety w systemie TRAPPIST-1
Artystyczna wizja widoku z jednej ze środkowych planet systemu TRAPPIST-1
Artystyczna wizja widoku z jednej ze środkowych planet systemu TRAPPIST-1

Filmy

ESOcast 96: Ultrachłodny karzeł i siedem planet
ESOcast 96: Ultrachłodny karzeł i siedem planet
ESOcast 97 Light: 7 planet wielkości Ziemi w pobliskim systemie gwiazdowym (4K UHD)
ESOcast 97 Light: 7 planet wielkości Ziemi w pobliskim systemie gwiazdowym (4K UHD)
Animacja planet krążących wokół TRAPPIST-1
Animacja planet krążących wokół TRAPPIST-1
Przelot przez system planetarny TRAPPIST-1
Przelot przez system planetarny TRAPPIST-1
Podróż do TRAPPIST-1 i jej siedmiu planet
Podróż do TRAPPIST-1 i jej siedmiu planet
Podróż z Ziemi do TRAPPIST-1
Podróż z Ziemi do TRAPPIST-1
Animacja planet na orbitach wokół TRAPPIST-1
Animacja planet na orbitach wokół TRAPPIST-1
Widok z planety TRAPPIST-1 f
Widok z planety TRAPPIST-1 f
Widok znad powierzchni TRAPPIST-1 b
Widok znad powierzchni TRAPPIST-1 b
System TRAPPIST-1 na filmie typu fulldome
System TRAPPIST-1 na filmie typu fulldome
Widok w wirtualnej rzeczywistości na system TRAPPIST-1
Widok w wirtualnej rzeczywistości na system TRAPPIST-1
System planetarny TRAPPIST-1 widziany z góry (wersja fulldome)
System planetarny TRAPPIST-1 widziany z góry (wersja fulldome)

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.