Press Release

Discovery of a Binary Quasar

15 July 1987

The discovery of what may be the first true binary quasar has been reported by a European-American team of astronomers using a combination of optical, spectral, and radio observations. The pairs of nearly identical quasars, separated by only 4.2 arcseconds projection on the sky, have a redshift of 1.345, corresponding to a distance of some 12 billion light-years from Earth (according to the standard cosmological distance scale) and are apparently associated with the radio source PKS 1145-071 in the constellation Crater [1].

The radio source PKS 1145-071 was known for many years to be associated with the quasar, but its binary nature had not been noted. Images of the object obtained 29 December 1986 at the European Southern Observatory's 2.2-meter telescope at La Silla, Chile, confirmed suspicions that the source was a double object. Spectroscopic observations to ascertain the nature of the two faint star-like components were obtained on 3 and 4 January 1987, at the Multiple Mirror Telescope Observatory in Arizona, operated by the Smithsonian Institution and the University of Arizona. The spectra confirmed that both objects (denoted A and B) were indeed quasars, very similar, and at essentially the same distance from Earth.

At first, the astronomers thought that the twin images might be another example of the so-called gravitational lens phenomenon: an image of a single distant quasar split in two by the gravitational field of a Galaxy or cluster of galaxies lying between the observer and the quasar. First predicted by Einstein's general theory of relativity some fifty years ago, several such gravitational lenses are currently known, the first one of which was, coincidentally, also confirmed by the Multiple Mirror Telescope in 1979.

Closer examination of the spectra of the two quasars revealed some subtle differences, reflecting slightly different physical conditions in the quasars themselves. Moreover, there appeared to be a small, but measurable relative velocity difference between them. This suggested that the pair may be two distinct quasars, rather than lensed images of a single object. However, the gravitational lens hypothesis could not be discarded on the basis of such data alone. Quasars are relatively rare in the universe, and having two of them so close together would be unprecedented.

The crucial observations which confirmed the physical binary nature of the system involved radio-wave imaging of PKS 1145-071 with the Very Large Array (VLA) of radio telescopes near Socorro, New Mexico, on 9 January 1987. The data showed only one radio quasar in the field, corresponding to the optically brighter quasar. This result was contrary to the gravitational lens hypothesis since a lens should split images equally in both visible light and radio waves. The conclusion was that the two quasars represented a true physical pair, near each other in space and possibly interacting or even in a collision.

The discovery of quasars, about 25 years ago, was one of the most exciting events in the history of modern astronomy. Despite of the slow growth in understanding their physical nature, these objects, which are the most distant known, still provide the best available probe of the most remote observable regions of the universe.

A true binary quasar can offer astronomers important clues to the origin and the maintenance of quasar activity, which is often thought to be caused by collisions of galaxies. The light from the two quasars can be also used to measure the sizes of the intergalactic gas clouds lying between them and Earth.

From the measured velocity difference and projected separation of the two quasars, the astronomers estimated the pair may have a mass at least equal to that of some hundred billion solar masses. (Although commonly used for the binary stars in our galaxy, this is the first time such measurement has been possible for quasars). Such masses are typical for normal galaxies, and this measurement supports further the generally accepted interpretation of quasars as active nuclei of distant galaxies.

It is also possible that the two quasars are members of an extremely distant cluster of galaxies. Mere existence of rich clusters of galaxies at such large redshifts is an interesting constraint for the theories of large-scale structure formation, and the future studies of normal galaxies in this hypothetical cluster could be extremely valuable for the studies of galaxy evolution in the early universe.

This Press Release is accompanied by a photo showing the radio and visible-light images of QQ 1145--071.

Notes

[1] The text of this communication was released simultaneously by the Harvard-Smithsonian Center for Astrophysics, Boston, Mass., U.S.A.

More information

The team reporting this discovery includes S. George Djorgovski (Harvard-Smithsonian Center for Astrophysics), Georges Meylan (European Southern Observatory), Richard Perley (National Radio Astronomy Observatory), and Patrick McCarthy (University of California at Berkeley). A preliminary announcement appeared in the June 1987 issue of ESO's journal The Messenger. The full report will appear in the Astrophysical Journal Letters.

Contacts

Richard West
ESO
Garching, Germany
Tel: +49 89 3200 6276
Email: information@eso.org

Connect with ESO on social media

About the Release

Release No.:eso8712
Legacy ID:PR 12/87
Name:PKS 1145-071
Type:Early Universe : Galaxy : Activity : AGN : Quasar
Facility:MPG/ESO 2.2-metre telescope

Images

Discovery of a binary quasar
Discovery of a binary quasar

Send us your comments!
Subscribe to receive news from ESO in your language
Accelerated by CDN77
Terms & Conditions
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.