Kids

Press Release

Starburst to Star Bust

ALMA Sheds Light on Mystery of Missing Massive Galaxies

24 July 2013

New observations from the ALMA telescope in Chile have given astronomers the best view yet of how vigorous star formation can blast gas out of a galaxy and starve future generations of stars of the fuel they need to form and grow. The dramatic images show enormous outflows of molecular gas ejected by star-forming regions in the nearby Sculptor Galaxy. These new results help to explain the strange paucity of very massive galaxies in the Universe. The study is published in the journal Nature on 25 July 2013.

Galaxies — systems like our own Milky Way that contain up to hundreds of billions of stars — are the basic building blocks of the cosmos. One ambitious goal of contemporary astronomy is to understand the ways in which galaxies grow and evolve, a key question being star formation: what determines the number of new stars that will form in a galaxy?

The Sculptor Galaxy, also known as NGC 253, is a spiral galaxy located in the southern constellation of Sculptor. At a distance of around 11.5 million light-years from our Solar System it is one of our closer intergalactic neighbours, and one of the closest starburst galaxies [1] visible from the southern hemisphere. Using the Atacama Large Millimeter/submillimeter Array (ALMA) astronomers have discovered billowing columns of cold, dense gas fleeing from the centre of the galactic disc.

With ALMA’s superb resolution and sensitivity, we can clearly see for the first time massive concentrations of cold gas being jettisoned by expanding shells of intense pressure created by young stars,” said Alberto Bolatto of the University of Maryland, USA lead author of the paper. “The amount of gas we measure gives us very good evidence that some growing galaxies spew out more gas than they take in. We may be seeing a present-day example of a very common occurrence in the early Universe.”

These results may help to explain why astronomers have found surprisingly few high-mass galaxies throughout the cosmos. Computer models show that older, redder galaxies should have considerably more mass and a larger number of stars than we currently observe. It seems that the galactic winds or outflow of gas are so strong that they deprive the galaxy of the fuel for the formation of the next generation of stars [2].

These features trace an arc that is almost perfectly aligned with the edges of the previously observed hot, ionised gas outflow,” noted Fabian Walter, a lead investigator at the Max Planck Institute for Astronomy in Heidelberg, Germany, and a co-author of the paper. “We can now see the step-by-step progression of starburst to outflow.”

The researchers determined that vast quantities of molecular gas — nearly ten times the mass of our Sun each year and possibly much more — were being ejected from the galaxy at velocities between 150 000 and almost 1 000 000 kilometres per hour [3]. The total amount of gas ejected would add up to more gas than actually went into forming the galaxy’s stars in the same time. At this rate, the galaxy could run out of gas in as few as 60 million years.

For me, this is a prime example of how new instruments shape the future of astronomy. We have been studying the starburst region of NGC 253 and other nearby starburst galaxies for almost ten years. But before ALMA, we had no chance to see such details,” says Walter. The study used an early configuration of ALMA with only 16 antennas. “It’s exciting to think what the complete ALMA with 66 antennas will show for this kind of outflow!” Walter adds.

More studies with the full ALMA array will help determine the ultimate fate of the gas carried away by the wind, which will reveal whether the starburst-driven winds are recycling or truly removing star forming material.

Notes

[1] Starburst galaxies are producing stars at an exceptionally high rate. As NGC 253 is one of the closest such extreme objects it is an ideal target to study the effect of such growth frenzy on the galaxy hosting it.

[2] Previous observations had shown hotter, but much less dense, gas streaming away from NGC 253’s star-forming regions, but alone this would have little, if any, impact on the fate of the galaxy and its ability to form future generations of stars. This new ALMA data show the much more dense molecular gas getting its initial “kick” from the formation of new stars and then being swept along with the thin, hot gas on its way to the galactic halo.

[3] Although the velocities are high, they may not be high enough for the gas to be ejected from the galaxy. It would get trapped in the galactic halo for many millions of years, and could eventually rain back on the disk, causing new episodes of star formation.

More information

This research was presented in a paper “The Starburst-Driven Molecular Wind in NGC 253 and the Suppression of Star Formation”, by Alberto D. Bolatto et al., to appear in Nature on 25 July 2013.

The team is composed of A. D. Bolatto (Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, USA), S. R. Warren (University of Maryland), A. K. Leroy (National Radio Astronomy Observatory, Charlottesville, USA), F. Walter (Max-Planck Institut für Astronomie, Heidelberg, Germany), S. Veilleux (University of Maryland), E. C. Ostriker (Department of Astrophysical Sciences, Princeton University, USA), J. Ott (National Radio Astronomy Observatory, New Mexico, USA), M. Zwaan (European Southern Observatory, Garching, Germany), D. B. Fisher (University of Maryland), A. Weiss (Max-Planck-Institut für Radioastronomie, Bonn, Germany), E. Rosolowsky (Department of Physics, University of Alberta, Canada) and J. Hodge (Max-Planck Institut für Astronomie, Heidelberg, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, Czechia, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Alberto Bolatto
University of Maryland
USA
Tel: +49 6221 528 493
Email: bolatto@astro.umd.edu

Martin Zwaan
ESO
Garching bei München, Germany
Tel: +49 89 3200 6834
Email: mzwaan@eso.org

Fabian Walter
Max-Planck Institut für Astronomie
Heidelberg, Germany
Tel: +49 6221 528 225
Email: walter@mpia.de

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

About the Release

Release No.:eso1334
Name:NGC 253
Type:Local Universe : Galaxy : Activity : Starburst
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2013Natur.499..450B

Images

Three-dimensional view of ALMA observations of the outflows from NGC 253
Three-dimensional view of ALMA observations of the outflows from NGC 253
The starburst galaxy NGC 253 seen with the VISTA and ALMA
The starburst galaxy NGC 253 seen with the VISTA and ALMA
The galaxy NGC 253 in the constellation of Sculptor
The galaxy NGC 253 in the constellation of Sculptor
Wide-field view of NGC 253 from the VLT Survey Telescope
Wide-field view of NGC 253 from the VLT Survey Telescope

Videos

Three-dimensional view of ALMA observations of the outflows from NGC 253
Three-dimensional view of ALMA observations of the outflows from NGC 253
Three-dimensional view of ALMA observations of the outflows from NGC 253
Three-dimensional view of ALMA observations of the outflows from NGC 253

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.