Persbericht
Mysterieuze radioflits verlicht de serene halo van een sterrenstelsel
26 september 2019
Astronomen die gebruik maken van ESO’s Very Large Telescope hebben voor het eerst waarnemingen gedaan van een snelle radioflits die door de halo van een sterrenstelsel heen ging. De mysterieuze uitbarsting van kosmische radiostraling, die nog geen milliseconde duurde, passeerde de halo vrijwel onverstoord, wat erop wijst dat deze verrassend ijl is en geen sterk magnetisch veld heeft. Deze techniek kan worden gebruikt om ook de ongrijpbare halo’s van andere sterrenstelsels te onderzoeken.
Met behulp van het signaal van een snelle radioflits hebben astronomen het diffuse gas in de halo van een massarijk sterrenstelsel doorgelicht [1]. In november 2018 detecteerde de Australian Square Kilometre Array Pathfinder (ASKAP) radiotelescoop een snelle radioflits die de aanduiding FRB 181112 kreeg. Vervolgwaarnemingen met ESO’s Very Large Telescope (VLT) en andere telescopen hebben laten zien dat de radiopulsen onderweg naar de aarde door de halo van een groot sterrenstelsel zijn gegaan. Deze ontdekking stelde astronomen in de gelegenheid om het radiosignaal te onderzoeken op aanwijzingen over de eigenschappen van het halogas.
‘Het signaal van de snelle radioflits heeft de eigenschappen van het magnetische veld rond het sterrenstelsel en de structuur van het halogas onthuld. Het onderzoek heeft een nieuwe techniek opgeleverd voor het onderzoek van de halo’s van sterrenstelsels’, zegt J. Xavier Prochaska, hoogleraar astronomie en astrofysica aan de Universiteit van Californië in Santa Cruz en hoofdauteur van het onderzoeksverslag dat vandaag in het tijdschrift Science is verschenen.
Astronomen weten nog steeds niet waardoor snelle radioflitsen worden veroorzaakt en zijn er pas onlangs in geslaagd om van enkele van deze zeer korte, heel heldere radiosignalen vast te stellen uit welke sterrenstelsels zij afkomstig waren. ‘Toen we de radio-opnamen over optische beelden heen legden, zagen we direct dat de snelle radioflits door de halo van een sterrenstelsel dat toevallig op de voorgrond staat heen is gegaan’, zegt medeauteur Cherie Day, promovendus aan Swinburne University of Technology in Australië. ‘Dat stelde ons voor het eerst in staat om de anderszins onzichtbare materie rond dit sterrenstelsel rechtstreeks te onderzoeken.’
Een galactische halo bevat zowel donkere als normale – of baryonische – materie. Deze laatste bestaat voornamelijk uit heet geïoniseerd gas. Waar het lichtgevende deel van een massarijk sterrenstelsel een middellijn van ruwweg 30.000 lichtjaar heeft, is zijn min of meer bolvormige halo tien keer zo groot. Halogas dat naar het centrum van het sterrenstelsel toe valt, dient als grondstof voor de vorming van sterren. Andere processen, zoals supernova-explosies, bewerkstelligen het tegenovergestelde: ze blazen materiaal uit stervormingsgebieden de galactische halo in. Een van de redenen waarom astronomen het halogas willen onderzoeken, is om meer te weten te komen over dit uitstootproces, dat de stervorming geheel kan stilleggen.
‘De halo van dit sterrenstelsel is verrassend rustig’, zegt Prochaska. ‘Het radiosignaal is vrijwel niet verstoord door het sterrenstelsel, wat in schril contrast staat met wat modellen eerder hebben voorspeld.’
Het signaal van FRB 181112 bestond uit meerdere pulsen, die elk minder dan 40 microseconden duurden (10.000 keer korter dan een oogknippering). De korte duur van de pulsen legt een bovenlimiet op aan de dichtheid van het halogas, omdat de tocht door een dichter medium de duur van het radiosignaal zou verbreden. De onderzoekers hebben berekend dat de dichtheid van het halogas minder dan 0,1 atoom per kubieke centimeter moet zijn (vergelijkbaar met een paar honderd atomen in een volume ter grootte van een feestballon). [2]
‘Net als de trillende lucht op een warme zomerdag, zou de ijle atmosfeer van dit massarijke sterrenstelsel het signaal van de snelle radioflits moeten vervormen. Maar in plaats daarvan ontvingen we een puls die zo maagdelijk en scherp is dat het gas geen sporen heeft achtergelaten,’ zegt mede-auteur Jean-Pierre Macquart, astronoom aan het International Center for Radio Astronomy Research van Curtin University in Australië.
Bij het onderzoek zijn geen bewijzen gevonden voor koude turbulente wolken of kleine compacte samenballingen van koel halogas. Het signaal van de snelle radioflits heeft ook informatie opgeleverd over het magnetische veld in de halo, dat erg zwak blijkt te zijn – een miljard keer zwakker dan dat van een koelkastmagneet.
Op basis van de resultaten van slechts één galactische halo kunnen de onderzoekers niet zeggen of de lage dichtheid en de geringe magnetische veldsterkte die zij gemeten hebben ongewoon zijn of dat deze eigenschappen bij eerdere onderzoeken van galactische halo’s overschat zijn. Prochaska zegt dat hij verwacht dat ASKAP en andere radiotelescopen de snelle radioflitsen zullen benutten om de eigenschappen van veel meer galactische halo’s te onderzoeken.
‘Misschien is dit sterrenstelsel wel een buitenbeentje,’ zegt hij. ‘Pas als we snelle radioflitsen hebben kunnen gebruiken om tientallen of honderden sterrenstelsels van uiteenlopende massa’s en leeftijden te onderzoeken, krijgen we beeld van de volledige populatie.’ Optische telescopen zoals ESO’s VLT spelen een belangrijke rol bij de bepaling van de afstand van het sterrenstelsel waaruit zo’n radioflits afkomstig is, en bij de vaststelling of de radioflits door de halo van een voorgrondstelsel kan zijn gegaan.
Noten
[1] De halo van ijl gas strekt zich uit tot ver buiten het lichtgevende deel van een sterrenstelsel, waar zich de sterren hebben verzameld. Hoewel dit hete, diffuse gas meer aan de massa van een sterrenstelsel bijdraagt dan de sterren, laat het zich maar moeilijk onderzoeken.
[2] De dichtheid legt ook grenzen op aan de mogelijkheid van turbulentie of van koel gas binnen de halo. ‘Koel’ is hier een relatief begrip: het gaat om temperaturen van circa 10.000 °C, wat aanzienlijk minder is dan de 1 miljoen graden van het hete halogas.
Meer informatie
De resultaten van dit onderzoek zijn op 26 september 2019 gepubliceerd in het wetenschappelijke tijdschrift Science.
Het onderzoeksteam bestaat uit J. Xavier Prochaska (University of California Observatories/Lick Observatory, Universiteit van Californië, VS en Kavli Institute for the Physics and Mathematics of the Universe, Japan), Jean-Pierre Macquart (International Centre for Radio Astronomy Research, Curtin University, Australië), Matthew McQuinn (Astronomy Department, University of Washington, VS), Sunil Simha (niversity of California Observatories/Lick Observatory, Universiteit van Californië, VS), Ryan M. Shannon (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australië), Cherie K. Day (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australië en Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Lachlan Marnoch (Industrial Research Organisation, Australia Telescope National Facility, Australia and Department of Physics and Astronomy, Macquarie University, Australië), Stuart Ryder (Department of Physics and Astronomy, Macquarie University, Australië), Adam Deller (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australië), Keith W. Bannister (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Shivani Bhandari (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Rongmon Bordoloi (North Carolina State University, Department of Physics, VS), John Bunton (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Hyerin Cho (School of Physics and Chemistry, Gwangju Institute of Science and Technology, Zuid-Korea), Chris Flynn (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australië), Elizabeth Mahony (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Chris Phillips (Commonwealth Science and Industrial Research Organisation, Australia Telescope National Facility, Australië), Hao Qiu (Sydney Institute for Astronomy, School of Physics, University of Sydney, Australië), Nicolas Tejos (Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Chili).
ESO is de belangrijkste intergouvernementele astronomische organisatie in Europa en verreweg de meest productieve sterrenwacht ter wereld. Zij wordt ondersteund door zestien lidstaten: België, Denemarken, Duitsland, Finland, Frankrijk, Ierland, Italië, Nederland, Oostenrijk, Polen, Portugal, Spanje, Tsjechië, het Verenigd Koninkrijk, Zweden en Zwitserland, en door gastland Chili en strategisch partner Australië. ESO voert een ambitieus programma uit, gericht op het ontwerpen, bouwen en beheren van grote sterrenwachten die astronomen in staat stellen om belangrijke wetenschappelijke ontdekkingen te doen. Ook speelt ESO een leidende rol bij het bevorderen en organiseren van samenwerking op astronomisch gebied. ESO beheert drie waarnemingslocaties van wereldklasse in Chili: La Silla, Paranal en Chajnantor. Op Paranal staan ESO’s Very Large Telescope (VLT) en haar toonaangevende Very Large Telescope Interferometer, evenals twee surveytelescopen – VISTA, die in het infrarood werkt, en de op zichtbare golflengten opererende VLT Survey Telescope. ESO speelt tevens een belangrijke partnerrol bij twee faciliteiten op Chajnantor, APEX en ALMA, het grootste astronomische project van dit moment. En op Cerro Armazones, nabij Paranal, bouwt ESO de 39-meter Extremely Large Telescope, de ELT, die ‘het grootste oog op de hemel’ ter wereld zal worden.
Links
Contact
J. Xavier Prochaska
UCO/Lick Observatory — UC Santa Cruz
USA
Tel: +1 (831) 295-0111
E-mail: xavier@ucolick.org
Cherie Day
Centre for Astrophysics and Supercomputing — Swinburne University of Technology
Australia
Tel: +61 4 5946 3110
E-mail: cday@swin.edu.au
Mariya Lyubenova
ESO Head of Media Relations
Garching bei München, Germany
Tel: +49 89 3200 6188
E-mail: pio@eso.org
Marieke Baan (Perscontact Nederland)
ESO Science Outreach Network
en NOVA Informatie Centrum
Tel: +31(0)20-5257480
E-mail: eson-netherlands@eso.org
Over dit bericht
Persberichten nr.: | eso1915nl |
Naam: | FRB 181112 |
Type: | Early Universe : Galaxy : Activity : AGN |
Facility: | Very Large Telescope |
Instruments: | FORS2 |
Science data: | 2019Sci...366..231P |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.