Nota de prensa
Las explosiones más grandes del universo, alimentadas por los imanes más potentes
Algunos estallidos de rayos gamma de larga duración son desencadenados por magnetares
8 de Julio de 2015
Observaciones llevadas a cabo desde los observatorios La Silla y Paranal de ESO, en Chile, han demostrado, por primera vez, la existencia de un vínculo entre una explosión de rayos gamma de muy larga duración y una explosión de supernova inusualmente brillante. Los resultados muestran que la explosión de supernova no fue provocada por decaimiento radiactivo, como se esperaba, sino que fue generada por los campos magnéticos superfuertes en decaimiento que rodean a un objeto exótico llamado magnetar. Los resultados aparecen en la revista Nature el 9 de julio de 2015.
Los estallidos de rayos gamma (en inglés GRB, de Gamma-ray bursts) son uno de los resultados asociados a las explosiones más grandes que tienen lugar desde el Big Bang. Se detectan utilizando telescopios en órbita, sensibles a este tipo de radiación de gran energía que no puede penetrar la atmósfera de la Tierra, y luego se observan en longitudes de onda más largas por otros telescopios desde el espacio y desde tierra.
Normalmente, los GRB sólo duran unos segundos, pero en casos muy raros los rayos gamma siguen durante horas [1]. Uno de estos GRB de ultra larga duración fue captado por el satélite Swift el 9 de diciembre de 2011, denominándolo GRB 111209A. Era el GRB más largo y más brillante jamás observado.
A medida que el resplandor de esta explosión fue desvaneciéndose, fue estudiado utilizando los instrumentos GROND (instalado en el Telescopio MPG/ESO de 2,2 metros, en La Silla) y X-shooter (instalado en el Very Large Telescope (VLT), en Paranal). Se halló la clara huella dejada por una supernova, más tarde bautizada como SN 2011kl. Es la primera vez que se descubre una relación entre una supernova y un GRB de muy larga duración [2].
El autor principal del nuevo artículo, Jochen Greiner, del Instituto Max-Planck para el estudio de Física Extraterrestre (Garching, Alemania) afirma que: "Dado que un estallido de rayos gamma de larga duración se produce sólo una vez cada 10.000 – 100.000 supernovas, la estrella que explotó debe ser especial por algún motivo. Los astrónomos habían asumido que estos GRB provenían de estrellas muy masivas (de unas 50 veces la masa del Sol) y que marcaban el inicio de la formación de un agujero negro. Pero nuestras nuevas observaciones de la supernova SN 2011 kl, hallada tras el GRB 111209A, están cambiando este paradigma de los GRB de ultra larga duración”.
En el escenario preferido de un colapso de estrella masiva (en inglés, conocido a veces como un “collapsar”) se espera que la emisión en los rangos óptico e infrarrojo de la explosión de supernova que duró una semana provenga del decaimiento de níquel-56 radiactivo formado en la explosión [3]. Pero en el caso de GRB 111209A las observaciones combinadas de GROND y VLT demostraron claramente, por primera vez, que este no podría ser el caso [4]. También se descartaron otras explicaciones alternativas [5].
La única explicación a las observaciones de la supernova que siguió al GRB 111209A era que ésta estaba siendo alimentado por un magnetar, una estrella de neutrones pequeña que gira cientos de veces por segundo y que posee un campo magnético mucho más fuerte que el de las estrellas de neutrones normales, también conocidas como púlsares de radio [6]. Los magnetares son, probablemente, los objetos más fuertemente magnetizados del universo conocido. Esta es la primera vez que es posible relacionar, de forma inequívoca, una supernova y un magnetar.
Paolo Mazzali, coautor del estudio, reflexiona sobre la importancia de los nuevos hallazgos: "los nuevos resultados proporcionan pruebas convincentes de una relación inesperada entre los GRB, las supernovas muy brillantes y los magnetares. Durante algunos años ya se planteó de forma teórica que podían estar relacionados, pero es emocionante poder conectarlo todo en este nuevo estudio”.
Jochen Greiner concluye: "El caso de SN 2011kl/GRB 111209A nos obliga a considerar una alternativa a la hipótesis del “collapsar”. Este hallazgo nos acerca mucho más un conocimiento definido y más claro sobre el funcionamiento de los GRB",
Notas
[1] Los GRB de larga duración normales duran entre 2 y 2.000 segundos. Ahora hay cuatro GRB conocidos de duraciones de entre 10.000 y 25.000 segundos — se denominan GRB ultra largos. También hay una clase distinta de GRB de menor duración que se cree que fueron creados por un mecanismo diferente.
[2] La relación entre supernovas y GRB normales de larga duración fue establecida inicialmente en 1998, principalmente por observaciones de la supernova SN 1998bw llevadas a cabo en observatorios de ESO y confirmada en el año 2003 con el GRB 030329.
[3] Se cree que, el propio GRB, se alimenta por los chorros relativistas producidos por el material de la estrella que colapsa hacia el objeto compacto central mediante un disco de acreción denso y caliente.
[4] La cantidad de níquel-56 medida en la supernova con el instrumento GROND es demasiado grande para ser compatible con la fuerte emisión ultravioleta vista por el instrumento X-shooter.
[5] Otras fuentes de energía sugeridas para explicar las supernovas superluminosas fueron las interacciones de choque con el material circundante (posiblemente vinculado a envolturas estelares expulsadas antes de la explosión) o una estrella progenitora supergigante azul. En el caso de SN 2011 kl las observaciones excluyen claramente ambas opciones.
[6] Los púlsares son la clase de estrella de neutrones observable más común, pero se cree que los magnetares desarrollan campos magnético que son de 100 a 1.000 veces más fuertes que los de los púlsares.
Información adicional
Este trabajo de investigación se presenta en el artículo científico titulado “A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst”, por J. Greiner et al., que aparece en la revista Nature el 9 de julio de 2015.
El equipo está formado por Jochen Greiner (Instituto Max-Planck de Física Extraterrestre [MPE]; Grupo de excelencia “Universe”, Universidad Técnica de Múnich, Garching, Alemania); Paolo A. Mazzali (Instituto de Investigación en Astrofísica, Universidad John Moores de Liverpool, Inglaterra; Instituto Max-Planck de Astrofísica, Garching, Alemania [MPA]); D. Alexander Kann (Observatorio Estatal de Turingia, Tautenburg, Alemania); Thomas Krühler (ESO, Santiago, Chile); Elena Pian (INAF, Instituto de Astrofísica Espacial y Física del Cosmos, Bolonia, Italia; Escuela Normal Superior, Pisa, Italia); Simon Prentice (Instituto de Investigación en Astrofísica, Universidad John Moores de Liverpool, Inglaterra); Felipe Olivares E. (Departamento de Ciencias Físicas, Universidad Andrés Bello, Santiago, Chile); Andrea Rossi (Observatorio Estatal de Turingia, Tautenburg, Alemania; INAF, Instituto de Astrofísica Espacial y Física del Cosmos, Bolonia, Italia); Sylvio Klose (Observatorio Estatal de Turingia, Tautenburg, Alemania); Stefan Taubenberger (MPA; ESO, Garching, Alemania); Fabian Knust (MPE); Paulo M.J. Afonso (American River College, Sacramento, California, EE.UU.); Chris Ashall (Instituto de Investigación en Astrofísica, Universidad John Moores de Liverpool, Inglaterra); Jan Bolmer (MPE; Universidad Técnica de Múnich, Garching, Alemania); Corentin Delvaux (MPE); Roland Diehl (MPE); Jonathan Elliott (MPE; Centro de Astrofísica Harvard-Smithsonian, Cambridge, Massachusetts, EE.UU.); Robert Filgas (Instituto de Física Experimental y Aplicada, Universidad Técnica de Checoslovaquia en Praga, República Checa); Johan P.U. Fynbo (Centro de cosmología DARK, Instituto Niels-Bohr, Universidad de Copenhague, Dinamarca); John F. Graham (MPE); Ana Nicuesa Guelbenzu (Observatorio Estatal de Turingia, Tautenburg, Alemania); Shiho Kobayashi (Instituto de Investigación en Astrofísica, Universidad John Moores de Liverpool, Liverpool, Inglaterra); Giorgos Leloudas (Centro de cosmología DARK, Instituto Niels-Bohr, Universidad de Copenhague, Dinamarca; Departamento de Física de Partículas y A Astrofísica, Instituto Weizmann de Ciencias, Israel); Sandra Savaglio (MPE; Universidad de Calabria, Italia); Patricia Schady (MPE); Sebastian Schmidl (Observatorio Estatal de Turingia, Tautenburg, Alemania); Tassilo Schweyer (MPE; Universidad Técnica de Múnich, Garching, Alemania); Vladimir Sudilovsky (MPE; Centro de Astrofísica Harvard-Smithonian, Cambridge, Massachusetts, EE.UU.); Mohit Tanga (MPE); Adria C. Updike (Universidad Roger Williams, Bristol, Rhode Island, EE.UU.); Hendrik van Eerten (MPE) y Karla Varela (MPE).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
Contactos
Jochen Greiner
Max-Planck Institut für extraterrestrische Physik
Garching, Germany
Teléfono: +49 89 30000 3847
Correo electrónico: jcg@mpe.mpg.de
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: rhook@eso.org
Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO
y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org
Acerca de la nota de prensa
Nota de prensa No.: | eso1527es-cl |
Nombre: | Neutron star |
Tipo: | Early Universe : Cosmology : Phenomenon : Gamma Ray Burst |
Facility: | MPG/ESO 2.2-metre telescope, Very Large Telescope |
Instruments: | GROND, X-shooter |
Science data: | 2015Natur.523..189G |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.