Nota de prensa
Astrónomos Descubren Planeta con un Corazón de Hielo y una Atmósfera Densa e Inhóspita
16 de Diciembre de 2009
Astrónomos han descubierto el segundo exoplaneta similar a la Tierra al que han determinado su masa y radio, proporcionando pistas claves sobre su estructura. También es la primera súper Tierra [1] donde se ha encontrado atmósfera. El exoplaneta, que orbita una pequeña estrella a sólo 40 años-luz de nosotros, abre espectaculares perspectivas en la búsqueda de mundos habitables. El planeta, llamado GJ1214b, tiene una masa de unas seis veces la de la Tierra y es probable que su interior esté compuesto principalmente por hielo de agua. Su superficie parece ser bastante caliente y está rodeado de una gruesa atmósfera que lo hace inhóspito para la vida como la conocemos en la Tierra.
En la publicación de Nature de esta semana, astrónomos anunciaron el descubrimiento de un planeta cercano a la estrella de baja masa GJ1214 [2]. Esta es la segunda vez que una súper Tierra en tránsito ha sido detectada, después del reciente descubrimiento del planeta Corot-7b [3]. Un tránsito ocurre cuando la órbita del planeta está alineada de modo que lo vemos cruzar la cara de su estrella madre. El planeta recientemente descubierto tiene una masa de unas seis veces la de nuestro planeta y 2,7 veces su radio, es decir, un tamaño intermedio entre la Tierra y los hielos gigantes del Sistema Solar: Urano y Neptuno.
Aunque la masa del GJ1214b es similar a la del Corot-7b, su radio es mucho más grande, sugiriendo que la composición de los dos planetas debe ser bastante diferente. Mientras Corot-7b probablemente tiene un centro rocoso y podría estar cubierto de lava, los astrónomos creen que tres cuartos de GJ1214b está compuesto de hielo de agua,siendo el resto silicona y hierro.
GJ1214b orbita su estrella una vez cada 38 horas a una distancia de sólo dos millones de kilómetros, por tanto, es 70 veces más cercano a su estrella de lo que está la Tierra respecto al Sol. “Estando tan cerca de su estrella madre, el planeta debe tener una temperatura en la superficie de alrededor de 200 grados Celsius, demasiado caliente para que el agua sea líquida”, dice David Charbonneau, autor principal del artículo que da cuenta del descubrimiento.
Cuando los astrónomos compararon el radio medido de GJ1214b con los modelos teóricos de los planetas, encontraron que el radio observado excedía las predicciones de los modelos y dedujeron entonces que existe algo más que la superficie sólida del planeta bloqueando la luz de la estrella: una atmósfera circundante de 200 kilómetros de espesor. “Esta atmósfera es mucho más gruesa que la de la Tierra, por lo que la alta presión y la ausencia de luz haría imposible la vida como la conocemos”, dice Charbonneau, “pero estas condiciones aún son muy interesantes ya que pueden permitir que se produzca alguna compleja química”.
“Como el planeta es demasiado caliente para mantener una atmósfera por mucho tiempo, GJ1214b representa la primera oportunidad de estudiar una atmósfera recientemente formada que envuelve un mundo que orbita otra estrella”, agrega Xavier Bonfils, miembro del equipo. “El planeta está tan cercano a nosotros que será posible estudiar su atmósfera aún con las actuales instalaciones”.
El planeta fue descubierto por primera vez como un objeto en tránsito dentro del proyecto MEarth, el que sigue alrededor de 2.000 estrellas de baja masa para buscar tránsitos deexoplanetas [4]. Para confirmar la naturaleza planetaria de GJ1214b y obtener su masa (usando el llamado método Doppler) los astrónomos necesitaron toda la precisión del espectrógrafo HARPS instalado en el telescopio de 3,6 metros de ESO en la La Silla. HARPS, un instrumento con una estabilidad incomparable y gran precisión, es el buscador de exoplanetas pequeños más exitoso del mundo.
“Este es el segundo exoplaneta de tipo súper Tierra del que pudo ser obtenida su masa y radio, permitiéndonos determinar la densidad e inferir la estructura interna”, agrega el coautor Stephane Udry.”En ambos casos la información de HARPS fue esencial para caracterizar al planeta”.
“Las diferentes composiciones de estos dos planetas son relevantes en la búsqueda de mundos habitables”, concluye Charbonneau. Si los planetas de tipo súper Tierra en general están rodeados por una atmósfera similar a la de GJ1214b, serían inhóspitos para el desarrollo de la vida tal como la conocemos en nuestro planeta.
Notas
[1] Una súper Tierra es definida como un planeta de entre una y diez veces la masa de la Tierra. Un exoplaneta es un planeta que orbita una estrella distinta del Sol.
[2] La estrella GJ1214 es cinco veces más pequeña que nuestro Sol y trescientas veces menos brillante.
[3] Corot–7b es el exoplaneta en órbita más veloz y pequeño que se conozca y tiene una densidad bastante similar a la de la Tierra, sugiriendo que se trata de un mundo sólido y rocoso. Descubierto por el satélite CoRoT como un objeto en tránsito, su verdadera naturaleza fue revelada por HARPS (Ver comunicado de prensa de ESO).
[4] El proyecto MEarth utiliza una “armada” de ocho pequeños telescopios, cada uno de un diámetro de 40 centímetros, ubicados en la cumbre del Monte Hopkins, Arizona, Estados Unidos. MEarth busca estrellas que cambian de brillo. El objetivo es encontrar un planeta que cruce en frente de, o transite su estrella. Durante dicho mini-eclipse, el planeta bloquea una pequeña porción de la luz de la estrella, volviéndola más tenue. La misión Keppler de la NASA también utiliza tránsitos para buscar planetas del tamaño de la Tierra que orbitan estrellas como el Sol. Sin embargo, en dichos sistemas la disminución de la luminosidad es tan sólo de uno en 10 mil. La alta precisión requerida para detectar la caída en luminosidad implica que dichos mundos sólo puedan ser descubiertos desde el espacio. En cambio, una súper Tierra transitando una pequeña estrella enana roja produce proporcionalmente una mayor reducción en el brillo y, por lo tanto, una señal más fuerte que es detectable desde la Tierra.
Información adicional
Esta investigación fue presentada en un artículo que aparece esta semana en Nature (“Una Súper Tierra Transitando una Estrella Cercana de Baja Masa”, por David Charbonneau y otros).
El equipo está compuesto por Davd Charbonneau, Zachory K. Berta, Jonathan Irwin, Christopher J. Burke, Philip Nutzman, Lars Buchhave, David W. Latham, Ruth A. Murray-Clay, Matthew J. Holman y Emilio E. Falco (Centro de Astrofísica Harvard-Smithsonian, Cambridge, EE.UU.), Christophe Lovis, Stephane Udry, Didier Queloz, Francesco Pepe y Michel Mayor (Observatorio de Ginebra, Suiza), Xavier Bonfils, Xavier Delfosse y Thierry Forveille (Universidad Joseph Fourier - Grenoble 1/CNRS, LOAG, Grenoble, Francia), y Joshua N. Winn (Instituto Kavli de Astrofísica e Investigación Espacial, MIT, Cambridge, EE.UU.).
ESO, el Observatorio Europeo Austral, es la principal organización astronómica intergubernamental en Europa y el observatorio astronómico más productivo del mundo. Es apoyado por 14 países: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza. ESO desarrolla un ambicioso programa enfocado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también cumple un rol principal en promover y organizar la cooperación en investigación astronómica. ESO opera tres sitios únicos de observación de clase mundial en Chile: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo. ESO es el socio europeo de un revolucionario telescopio, ALMA, el proyecto astronómico más grande en existencia. ESO está planificando actualmente un telescopio de óptica infrarroja cercana de 42 metros, European Extremely Large Telescope, el E-ELT, que se convertirá en “el ojo más grande del mundo en el cielo”.
Enlaces
Contactos
Stéphane Udry
Geneva University, Switzerland
Geneva, Switzerland
Teléfono: +41 22 379 2467
Correo electrónico: stephane.udry@unige.ch
Xavier Bonfils
Université Joseph Fourier - Grenoble 1 / CNRS, Laboratoire d'Astrophysique de Grenoble (LAOG), France
France
Teléfono: +33 47 65 14 215
Correo electrónico: xavier.bonfils@obs.ujf-grenoble.fr
David Charbonneau
Harvard-Smithsonian Center for Astrophysics
Cambridge, USA
Teléfono: +1 617 496 6515
Correo electrónico: dcharbon@cfa.harvard.edu
Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO
y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org
Acerca de la nota de prensa
Nota de prensa No.: | eso0950es-cl |
Nombre: | GJ1214b |
Tipo: | Milky Way : Star : Circumstellar Material : Planetary System |
Facility: | ESO 3.6-metre telescope |
Instruments: | HARPS |
Science data: | 2009Natur.462..891C |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.