Pressemitteilung
Was löst die Aktivität von supermassereichen Schwarzen Löchern aus?
Kollisionen von Galaxien sind nicht die Ursache – auch nicht im Gedränge des frühen Universums
13. Juli 2011
Eine neue Studie, wirft neues Licht auf die Aktivität der massereichen Schwarzen Löcher in den Zentren von Galaxien während der letzten 11 Milliarden Jahre. Demnach wird diese Aktivität nicht, wie bislang vermutet, durch Galaxienverschmelzungen ausgelöst. Die Studie beruht auf Daten vom Very Large Telescope der ESO und des Röntgensatelliten XMM-Newton der europäischen Weltraumagentur ESA.
Im Herzen der meisten, wenn nicht sogar aller großen Galaxien lauert ein supermassereiches Schwarzes Loch mit einer Masse, die Millionen oder sogar Milliarden Mal größer ist als die unserer Sonne. Bei vielen Galaxien, auch bei unserer Milchstraße, ist das Schwarze Loch in einem ruhigen Zustand. In anderen Fällen, die im frühen Universum besonders häufig auftreten [1], verschlingt das „Monster“ im Zentrum der Galaxie größere Mengen Materie, welche dann beim Sturz in das Schwarze Loch intensive Strahlung aussendet. So wird aus einem Schwarzen Loch ein so genannter aktiver Galaxienkern (englisch Active Galactic Nucleus, abgekürzt AGN).
Wie das Material, das die Aktivität auslöst und so gewaltige Ausbrüche in den Zentren der Galaxien verursacht, in die Nähe des Schwarzen Lochs gerät ist noch ungeklärt. Bisher vermuteten viele Astronomen, dass AGN aktiviert werden, wenn die regulären Bahnen der Materie in Galaxien durch eine Verschmelzung oder einen Beinahe-Zusammenstoß zweier Galaxien gestört werden, und damit neue Materie in Richtung des Schwarzen Loches fällt. Die hier vorgestellte Untersuchung belegt freilich, dass dies auf viele aktive Galaxien nicht zutreffen dürfte.
Viola Allevato vom Max-Planck-Institut für Plasmaphysik und dem Exzellenzcluster Universe in Garching hat zusammen mit einem aus Mitgliedern der COSMOS-Kollaboration [2] bestehenden, internationalen Wissenschaftlerteam mehr als 600 aktive Galaxien untersucht, die sich im COSMOS-Feld [3] befinden, einem besonders gut untersuchten Gebiet des Himmels. Genau wie sie erwartet hatten, stellten die Wissenschaftler fest, dass die meisten aktiven Galaxien während der vergangenen 11 Milliarden Jahre mäßig hell leuchteten, während extrem leuchtkräftige aktive Galaxienkerne eher selten waren. Zu ihrer Überraschung stellten die Astronomen allerdings auch fest, dass die überwiegende Mehrheit dieser häufigeren und weniger hellen AGN nicht durch Galaxienverschmelzungen aktiviert wurden [4]. Die Ergebnisse der Studie erscheinen in der Faczeitschrift „The Astrophysical Journal“.
Ein aktiver Galaxienkern verrät sich durch Röntgenstrahlung, die aus der Umgebung des Schwarzen Loches stammt und vom ESA-Satelliten XMM-Newton nachgewiesen werden kann. Die auf diese Weise herausgefilterten Galaxien wurden anschließend mit dem Very Large Telescope der ESO beobachtet, um ihre Entfernung zu bestimmen [5]. Die Kombination beider Beobachtungsverfahren ermöglichte es dem Team, eine dreidimensionale Karte der Positionen der aktiven Galaxien zu erstellen.
“Es hat über fünf Jahre gedauert, aber dafür haben wir jetzt eine der größten und vollständigsten Bestandsaufnahmen von aktiven Galaxien am Röntgenhimmel” erklärt Marcella Brusa, eine der Autorinnen der Studie.
Die Astronomen untersuchten anhand dieser Karte die Verteilung der aktiven Galaxien und verglichen sie mit theoretischen Vorhersagen. Ebenso waren sie in der Lage festzustellen, wie sich diese Verteilung über den Zeitraum von vor etwa 11 Milliarden Jahren bis in die Gegenwart veränderte.
Dabei zeigte sich, dass die meisten aktiven Kerne in großen, massereichen Galaxien zu finden sind, die große Mengen an Dunkler Materie enthalten [6]. Das war eine Überraschung und steht im Widerspruch zu theoretischen Vorhersagen – wenn die Mehrzahl der aktiven Kerne durch Kollisionen und Verschmelzungen von Galaxien entstünden, wäre zu erwarten, dass sie sich bevorzugt in Galaxien mittlerer Masse (mit etwa einer Billion Sonnenmassen) befinden. Das Team fand dagegen heraus, dass sich die meisten aktiven Kerne in Galaxien befinden, deren Masse rund zwanzigmal größer war als von der Theorie der Galaxienverschmelzungen vorhergesagt.
“Diese Ergebnisse eröffnen uns einen völlig neuen Blick darauf ,wie supermassereiche Schwarze Löcher ihre Mahlzeit beginnen“ sagt Viola Allevato, die Erstautorin des Fachartikels, in dem die Ergebnisse der Studie beschrieben werden. “Offenbar werden Schwarze Löcher in den meisten Fällen durch Vorgänge innerhalb der Galaxie selbst gefüttert, zum Beispiel durch Scheibeninstabilitäten oder durch die rasche Bildung vieler neuer Sterne, nicht aber durch Kollisionen mit anderen Galaxien.“
Alexis Finoguenov, der die Arbeit betreut hat, schließt: “Sogar in der fernen Vergangenheit, vor fast 11 Milliarden Jahren, waren Kollisionen zwischen Galaxien nur in wenigen Prozent der Fälle der Auslöser für die Aktivität der mittelhellen Galaxienkerne. Die Ergebnisse sind umso überraschender, da zu dieser Zeit die Galaxien viel näher zusammen standen Galaxienverschmelzungen daher häufiger gewesen sein dürften als in der jüngeren Vergangenheit.”
Endnoten
[1] Am häufigsten sind extrem helle aktive Galaxienkerne rund drei bis vier Milliarden Jahre nach dem Urknall. Weniger helle Objekte findet man dagegen etwa acht Milliarden Jahre nach dem Urknall am häufigsten.
[2] Die neue Studie basiert auf zwei großen europäischen Astronomieprogrammen: der XMM-Newton-Durchmusterung des COSMOS-Feldes unter Leitung von Günther Hasinger und dem ESO-Programm zCOSMOS, das von Simon Lilly geleitet wird. Diese Programme sind Teil der COSMOS-Initiative, eines internationalen Projektes, in dessen Rahmen ein bestimmtes Feld am Himmel mit dem Hubble-Weltraumteleskop von NASA und ESA, dem Röntgensatelliten XMM-Newton der ESA, dem Röntgensatelliten Chandra der NASA, dem Spitzer-Weltraumteleskop der NASA sowie mit dem Very Large Telescope der ESO und anderen bodengebundenen Instrumenten beobachtet wird.
[3] Das COSMOS-Feld bedeckt eine Fläche am Himmel im Sternbild Sextans (der Sextant) die etwa zehn Vollmonden entspricht. Das Feld wurde mit einer Vielzahl von Teleskopen bei verschiedenen Wellenlängen beobachtet, so dass eine ganze Reihe von Studien von diesem Datenschatz profitieren kann.
[4] Im vergangenen Jahr zeigte eine Veröffentlichung, die auf Daten des NASA/ESA-Weltraumteleskops Hubble basiert (heic1101), dass es in einer Stichprobe von relativ nahen Galaxien keinen starken Zusammenhang zwischen aktiven Kernen und Verschmelzungen von Galaxien gibt. Diese Untersuchung deckte einen Zeitraum bis etwa acht Milliarden Jahre vor der Gegenwart ab, während die neue Studie die Gültigkeit dieser Schlussfolgerung auf bis zu 11 Milliarden Jahre vor unserer Zeit bestätigt und damit einen zusätzlichen Zeitraum abdeckt, in dem die Galaxien noch wesentlich dichter zusammenstanden.
[5] Das Team verwendete einen Spektrografen am VLT, um das schwache Licht der Galaxien in seine einzelnen Farben zu zerlegen. Eine gründliche Auswertung solcher Spektren ermöglicht die Bestimmung der Rotverschiebung, also des Ausmaßes, um das die Expansion des Universums das Licht gedehnt hat, seit es die Galaxie verlassen hat. Die Rotverschiebung ist daher ein Maß für die Entfernung der Galaxien von der Erde. Da das Licht sich nur mit einer endlichen Geschwindigkeit ausbreitet, zeigt die Rotverschiebung auch an, wie weit wir in der Zeit zurückschauen, wenn wir diese fernen Galaxien beobachten.
[6] Die Dunkle Materie ist ein geheimnisvoller und unsichtbarer Bestandteil der meisten, wenn nicht sogar aller Galaxien, egal ob nun aktiv oder ruhig, inklusive unserer Heimatgalaxie, der Milchstraße. Die Autoren der Studie haben die Menge an Dunkler Materie – die ein Indikator für die jeweilige Gesamtmasse ist – für jede Galaxie aus der Verteilung aller Galaxien in der Studie abgeschätzt.
Weitere Informationen
Die hier vorgestellten Forschungsergebnisse von Allevato et al. erscheinen im Juli 2011 unter dem Titel “The XMM-Newton Wide field survey in the COSMOS field: redshift evolution of AGN bias and subdominant role of mergers in triggering moderate luminosity AGN at redshift up to 2.2 ” in der Fachzeitschrift The Astrophysical Journal.
Die beteiligten Wissenschaftler sind V. Allevato (Max-Planck-Institut für Plasmaphysik [IPP] und Excellence Cluster Universe, Garching), A. Finoguenov (Max-Planck-Institut für Extraterrestrische Physik [MPE], Garching und University of Maryland, Baltimore, USA), N. Cappelluti (INAF-Osservatorio Astronomico de Bologna [INAF-OA], Italien und University of Maryland, Baltimore, USA), T.Miyaji (Universidad Nacional Autonoma de Mexico, Ensenada, Mexico und University of California at San Diego, USA), G. Hasinger (IPP), M. Salvato (IPP und Excellence Cluster Universe), M. Brusa (MPE), R. Gilli (INAF-OA), G. Zamorani (INAF-OA), F. Shankar (Max-Planck-Institut für Astrophysik, Garching), J. B. James (University of California at Berkeley, USA and University of Copenhagen, Denmark), H. J. McCracken (Observatoire de Paris, Frankreich), A. Bongiorno (MPE), A. Merloni (Excellence Cluster Universe, Garching und MPE), J. A. Peacock (University of California at Berkeley, USA), J. Silverman (University of Tokyo, Japan) und A. Comastri (INAF-OA).
Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.
Links
- Fachartikel
- Fotos vom Very Large Telescope
- Pressemitteilung des Hubble-Weltraumteleskops zu der vorangegangenen Studie (heic1101)
- Zoom auf das COSMOS-Feld
Kontaktinformationen
Dr Alexis Finoguenov
Max-Planck-Institut für extraterrestrische Physik
Garching, Germany
Tel: +49 89 30000 3644
E-Mail: alexis@mpe.mpg.de
Viola Allevato
Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe
Garching, Germany
Tel: +49 89 3299 1558
E-Mail: viola.allevato@ipp.mpg.de
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
E-Mail: rhook@eso.org
Rodrigo Alvarez (Pressekontakt Belgien)
ESO Science Outreach Network
und Planetarium, Royal Observatory of Belgium
Tel: +32-2-474 70 50
E-Mail: eson-belgium@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1124de-be |
Name: | Active Galactic Nuclei |
Typ: | Early Universe : Galaxy : Activity : AGN |
Facility: | Very Large Telescope, XMM-Newton |
Instruments: | VIMOS |
Science data: | 2011ApJ...736...99A |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.