Pressemitteilung
Gewaltige, lange zurückliegende Galaxienverschmelzungen
ALMA und APEX entdecken riesige Ansammlungen sich bildender Galaxien im frühen Universum
25. April 2018
Die ALMA- und APEX-Teleskope haben tief in den Weltraum geschaut - zurück in die Zeit, als das Universum nur ein Zehntel seines heutigen Alters hatte - und so die Anfänge gigantischer kosmischer Massenansammlungen miterlebt: die bevorstehenden Kollisionen junger Starburstgalaxien. Astronomen dachten bislang, dass diese Ereignisse etwa drei Milliarden Jahre nach dem Urknall stattfanden und waren daher überrascht, dass die neuen Beobachtungen sie bereits zu einer Zeit zeigen, als das Universum nur halb so alt war! Man geht davon aus, dass diese uralten Galaxiensysteme die massereichsten Strukturen im bekannten Universum bilden: Galaxienhaufen.
Mit dem Atacama Large Millimeter/Submillimeter Array (ALMA) und dem Atacama Pathfinder Experiment (APEX) haben zwei internationalen Wissenschaftlerteams unter der Leitung von Tim Miller von der Dalhousie University in Kanada und der Yale University in den USA sowie Iván Oteo von der University of Edinburgh in Großbritannien erstaunlich dichte Konzentrationen von Galaxien aufgefunden, die dabei sind, sich zu vereinigen und die Kerne dessen zu bilden, was später große Galaxienhaufen sein werden.
Das Miller-Team schaute durch 90% der Strecke des beobachtbaren Universums und untersuchte einen Proto-Galaxienhaufen namens SPT2349-56. Das Licht von diesem Objekt begann zu uns zu reisen, als das Universum nur etwa ein Zehntel seines heutigen Alters hatte.
Die einzelnen Galaxien in dieser dichten kosmischen Massenansammlung sind Starburst-Galaxien und die Konzentration starker Sternentstehung in einer so kompakten Region macht dies zur bei weitem aktivsten Region, die jemals im jungen Universum beobachtet wurde. Tausende von Sternen werden dort jedes Jahr geboren, zum Vergleich: In unserer eigenen Milchstraße ist es durchschnittlich nur ein einziger.
Das Oteo-Team hatte bereits eine ähnlich große Galaxienverschmelzung aus zehn staubigen sternbildenden Galaxien entdeckt, die wegen ihrer tiefroten Farbe als "staubiger roter Kern" bezeichnet wird, indem es aus Beobachtungen von ALMA und APEX kombinierte.
Iván Oteo erklärt, warum sie mit diesen Objekten nicht gerechnet haben: "Die Lebensdauer von staubiger Sternentstehung wird relativ kurz eingeschätzt, weil das Gas dabei außerordentlich schnell verbraucht wird. Zu jeder Zeit, in jeder Ecke des Universums, sind solche Galaxien in der Regel in der Minderheit. Es ist also sehr rätselhaft, zahlreiche staubreiche Sternentstehungsgebiete gleichzeitig zu finden, und das müssen wir noch verstehen."
Diese sich bildenden Galaxienhaufen wurden zunächst mit dem South Pole Telescope und dem Weltraumobservatorium Herschel als schwache Lichtflecken entdeckt. Nachfolgende ALMA- und APEX-Beobachtungen zeigten dann, dass sie eine ungewöhnliche Struktur haben und haben bestätigt, dass ihr Licht viel früher als erwartet entstand - nur 1,5 Milliarden Jahre nach dem Urknall.
Die neuen hochauflösenden ALMA-Beobachtungen ergaben schließlich, dass die beiden schwachen Lichtquellen keine Einzelobjekte sind, sondern sich aus vierzehn bzw. zehn einzelnen massereichen Galaxien zusammensetzen, die jeweils in einem Umkreis liegen, der mit der Entfernung zwischen der Milchstraße und den benachbarten Magellanschen Wolken vergleichbar ist.
"Diese Entdeckungen von ALMA sind nur die Spitze des Eisbergs. Zusätzliche Beobachtungen mit dem APEX-Teleskop zeigen, dass die tatsächliche Anzahl der sternbildenden Galaxien wahrscheinlich sogar dreimal höher ist. Laufende Beobachtungen mit dem MUSE-Instrument am VLT der ESO identifizieren auch weitere Galaxien", kommentiert ESO-Astronom Carlos De Breuck.
Aktuelle theoretische und computergestützte Modelle haben ergeben, dass so massereiche Proto-Galaxienhaufen eigentlich viel länger gebraucht haben sollten, um sich zu entwickeln. Mithilfe der ALMA-Daten mit ihrer überlegenen Auflösung und Empfindlichkeit als Input für anspruchsvolle Computersimulationen sind die Wissenschaftler in der Lage, die Haufenbildung weniger als 1,5 Milliarden Jahre nach dem Urknall zu untersuchen.
"Wie diese Ansammlung von Galaxien so schnell so groß wurde, ist erstmal ein Rätsel. Sie hat sich offenbar nicht allmählich über Milliarden von Jahren angesammelt, so wie die Astronomen es erwarten haben. Diese Entdeckung bietet eine großartige Gelegenheit zu untersuchen, wie massereiche Galaxien zusammengekommen sind, um riesige Galaxienhaufen zu bilden", erläutert Tim Miller, Doktorand an der Yale University und Hauptautor einer der beiden Fachartikel.
Weitere Informationen
Die hier präsentierten Forschungsergebnisse werden in zwei Artikeln vorgestellt: "The Formation of a Massive Galaxy Cluster Core at z = 4.3" von T. Miller et al. wird in der Fachzeitschrift Nature erscheinen, "An Extreme Proto-cluster of Luminous Dusty Starbursts in the Early Universe", von I. Oteo et al. ist bereits im Astrophysical Journal erschienen.
Das Team um Miller besteht aus: T. B. Miller (Dalhousie University, Halifax, Kanada; Yale University, New Haven, Connecticut, USA), S. C. Chapman (Dalhousie University, Halifax, Kanada; Institute of Astronomy, Cambridge, Großbritannien), M. Aravena (Universidad Diego Portales, Santiago, Chile), M. L. N. Ashby (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), C. C. Hayward (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA; Center for Computational Astrophysics, Flatiron Institute, New York, USA), J. D. Vieira (University of Illinois, Urbana, USA), A. Weiß (Max-Planck-Institut für Radioastronomie, Bonn), A. Babul (University of Victoria, Kanada) , M. Béthermin (Aix-Marseille Université, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Frankreich), C. M. Bradford (California Institute of Technology, Pasadena, USA; Jet Propulsion Laboratory, Pasadena, USA), M. Brodwin (University of Missouri, Kansas City, USA), J. E. Carlstrom (University of Chicago, Illinois USA), Chian-Chou Chen (ESO, Garching), D. J. M. Cunningham (Dalhousie University, Halifax, Kanada; Saint Mary’s University, Halifax, Nova Scotia, Kanada), C. De Breuck (ESO, Garching), A. H. Gonzalez (University of Florida, Gainesville, Florida, USA), T. R. Greve (University College London, Gower Street, London, Großbritannien), Y. Hezaveh (Stanford University, Kalifornien, USA), K. Lacaille (Dalhousie University, Halifax, Kanada; McMaster University, Hamilton, Kanada), K. C. Litke (Steward Observatory, University of Arizona, Tucson, USA), J. Ma (University of Florida, Gainesville, USA), M. Malkan (University of California, Los Angeles, USA) , D. P. Marrone (Steward Observatory, University of Arizona, Tucson, USA), W. Morningstar (Stanford University, Kalifornien, USA), E. J. Murphy (National Radio Astronomy Observatory, Charlottesville, Virginia, USA), D. Narayanan (University of Florida, Gainesville, USA), E. Pass (Dalhousie University, Halifax, Kanada), University of Waterloo, Kanada), R. Perry (Dalhousie University, Halifax, Kanada), K. A. Phadke (University of Illinois, Urbana, USA), K. M. Rotermund (Dalhousie University, Halifax, Kanada), J. Simpson (University of Edinburgh, Royal Observatory, Blackford Hill; Durham University, Großbritannien), J. S. Spilker (Steward Observatory, University of Arizona, Tucson, USA), J. Sreevani (University of Illinois, Urbana, USA), A. A. Stark (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), M. L. Strandet (Max-Planck-Institut für Radioastronomie, Bonn) und A. L. Strom (Observatories of The Carnegie Institution for Science, Pasadena, Kalifornien, USA).
Das Team um Oteo besteht aus: I. Oteo (Institute for Astronomy, University of Edinburgh, Royal Observatory,Großbritannien; ESO, Garching), R. J. Ivison (ESO, Garching; Institute for Astronomy, University of Edinburgh, Royal Observatory, Großbritannien), L. Dunne (Institute for Astronomy, University of Edinburgh, Royal Observatory, Großbritannien; Cardiff University, Großbritannien), A. Manilla-Robles (ESO, Garching; University of Canterbury, Christchurch, New Zealand), S. Maddox (Institute for Astronomy, University of Edinburgh, Royal Observatory, Großbritannien; Cardiff University, Großbritannien), A. J. R. Lewis (Institute for Astronomy, University of Edinburgh, Royal Observatory, Großbritannien), G. de Zotti (INAF-Osservatorio Astronomico di Padova, Italien), M. Bremer (University of Bristol, Tyndall Avenue, Bristol, Großbritannien), D. L. Clements (Imperial College, London, Großbritannien), A. Cooray (University of California, Irvine, USA), H. Dannerbauer (Instituto de Astrofíısica de Canarias, La Laguna, Tenerife, Spanien; Universidad de La Laguna, Dpto. Astrofísica, La Laguna, Tenerife, Spanien), S. Eales (Cardiff University, Großbritannien), J. Greenslade (Imperial College, London, Großbritannien), A. Omont (CNRS, Institut d’Astrophysique de Paris, Frankreich; UPMC Univ. Paris 06, Frankreich), I. Perez–Fournón (University of California, Irvine, USA; Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spanien), D. Riechers (Cornell University, Space Sciences Building, Ithaca, New York, USA), D. Scott (University of British Columbia, Vancouver, Kanada), P. van der Werf (Leiden Observatory, Universeit Leiden, Niederlande), A. Weiß (Max-Planck-Institut für Radioastronomie, Bonn) und Z-Y. Zhang (Institute for Astronomy, University of Edinburgh, Royal Observatory, Großbritannien; ESO, Garching).
Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Die Organisation hat 15 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Hinzu kommen das Gastland Chile und Australien als strategischer Partner. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.
Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.
Links
Kontaktinformationen
Axel Weiss
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 273
E-Mail: aweiss@mpifr-bonn.mpg.de
Carlos de Breuck
ESO
Garching, Germany
Tel: +49 89 3200 6613
E-Mail: cdebreuc@eso.org
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org
Peter Habison (Pressekontakt Österreich)
ESO Science Outreach Network
und stem & mint e.U. – Space and Science Communications
Vienna, Austria
Tel: +43 676 648 7003
E-Mail: eson-austria@eso.org
Über die Pressemitteilung
Pressemitteilung Nr.: | eso1812de-at |
Name: | SPT2349-56 |
Typ: | Early Universe : Cosmology : Morphology : Large-Scale Structure |
Facility: | Atacama Large Millimeter/submillimeter Array, Atacama Pathfinder Experiment |
Instruments: | LABOCA |
Science data: | 2018Natur.556..469M 2018ApJ...856...72O |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.