Pressemitteilung

Ferne Galaxien zeigen, wie sich der kosmische Nebel lichtet

Neue VLT-Beobachtungen erhellen den Verlauf der Reionisation

12. Oktober 2011

Mithilfe des Very Large Telescope der ESO haben Wissenschaftler verschiedene Abschnitte einer besonders interessanten kosmischen Epoche untersucht: der Reionisationsära vor rund 13 Milliarden Jahren, während derer das Weltall für ultraviolettes Licht durchsichtig wurde. Indem sie einige der entferntesten bekannten Galaxien genau untersuchten, konnten die Wissenschaftler erstmals den zeitlichen Ablauf der Reionisation rekonstruieren. Sie fanden heraus, dass die Reionisation schneller als bisher angenommen verlaufen sein muss.

Ein internationales Astronomenteam hat das VLT als Zeitmaschine verwendet, um einige der entferntesten je entdeckten Galaxien zu beobachten und auf diese Weise in die ferne Vergangenheit unseres Universums zu schauen. Wir sehen diese Galaxien, deren Entfernungen die Wissenschaftler im Laufe der Untersuchung genau bestimmen konnten, so, wie sie zu einer Zeit zwischen 780 Millionen und einer Milliarde Jahren nach dem Urknall gewesen sind [1].

Die neuen Beobachtungen ermöglichen eine erste Rekonstruktion des zeitlichen Ablaufs der Reionisationsära [2] zu ermitteln. Während dieser Epoche lichtete sich der Nebel aus Wasserstoffgas im frühen Universum, so dass sich ultraviolettes Licht erstmals ungehindert ausbreiten konnte.

Die neuen Ergebnisse, die im Fachmagazin The Astrophysical Journal erscheinen werden, beruhen auf einer ausdauernden und systematischen Suche nach weit entfernten Galaxien, die das Team während der letzten drei Jahre mit dem VLT durchgeführt hat.

"Archäologen rekonstruieren den zeitlichen Verlauf der Vergangenheit aus Artefakten, die sie in verschiedenen Bodenschichten finden. Astronomen können noch mehr: Wir blicken direkt in die ferne Vergangenheit, indem wir das schwache Licht von Galaxien aus verschiedenen Stadien der Entwicklung des Kosmos beobachten", erklärt der Leiter des Projekts, Adriano Fontana vom italienischen INAF Osservatorio Astronomico di Roma. "Die Unterschiede zwischen den Galaxien verraten uns, wie sich die Bedingungen im Universum während dieser wichtigen Epoche verändert haben und auch, wie schnell diese Veränderungen vor sich gegangen sind."

Verschiedene chemische Elemente leuchten in charakteristischen Farben. Helles Leuchten bei ganz bestimmten Farben bezeichnen die Physiker als Emissionslinien. Eine der hellsten solcher Linien im ultravioletten Bereich ist die Lyman-Alpha-Linie, die von Wasserstoffgas erzeugt wird [3]. Sie ist leicht zu erkennen und hell genug, um selbst bei Beobachtungen von sehr schwachen und weit entfernten Galaxien nachweisbar zu sein.

Unter anderem haben die Forscher eben solche Lyman-Alpha-Linien bei fünf sehr weit entfernten Galaxien [4] nachgewiesen. Das ermöglichte zwei wichtige Schlüsse: Erstens zeigt das Ausmaß, um das die Linie in Richtung des roten Endes des Spektrums verschoben ist, die Entfernung der betreffenden Galaxie an. Daraus lässt sich wiederum ableiten, bis wie weit nach dem Urknall die Forscher bei der Beobachtung jeweils zurückblicken [5]. Auf diese Weise kann man eine Zeitreihe aufstellen, die zeigt, wie sich nach und nach die von den Galaxien ausgesandte Strahlung verändert. Zweitens zeigt die Untersuchung der Linien, ein wie großer Anteil des Lyman-Alpha-Licht - das von leuchtendem Wasserstoffgas innerhalb der Galaxien erzeugt wurde - zu verschiedenen Zeitpunkten wieder vom Nebel aus neutralem Wasserstoff geschluckt wurde, der den intergalaktischen Raum erfüllt.

"Zwischen den am weitesten entferntesten und den nächsten Galaxien in unserer Stichprobe beobachten wir einen dramatischen Unterschied bei der Menge des verschluckten ultravioletten Lichts", so Laura Pentericci vom INAF Osservatorio Astronomico di Roma, die Erstautorin der Veröffentlichung. "Als das Universum erst 780 Millionen Jahre alt war, gab es noch sehr viel neutralen Wasserstoff, der zwischen 10 und 50% des Volumens des gesamten Raumes ausfüllte. Doch schon 200 Millionen Jahre später war die Menge des neutralen Wasserstoffs auf ein dem heutigen Wert vergleichbares Niveau abgesunken. Offenbar ist die Reionisation schneller abgelaufen, als die Astronomen bisher gedacht hatten."

Zusätzlich geben die Beobachtungen des Teams Hinweise auf die Quelle des ultravioletten Lichtes, das die für die Reionisation nötige Energie geliefert hat. Zum Ursprung dieses Lichts gibt es verschiedene Theorien; zwei der prominentesten besagen, dass das Licht von der ersten Generation von Sternen im Universum stammt [6] oder aber von der intensiven Strahlung herrührt, die von Materie ausgesandt wird, wenn sie auf ein Schwarzes Loch zu stürzt.

"Die genaue Untersuchung des schwachen Lichtes von zwei der am weitesten entfernten Galaxien, die wir beobachtet haben, legt nahe, dass die allererste Generation von Sternen zum Energieausstoß zumindest beigetragen hat", so Eros Vanzella, Astronom am INAF Osservatorio Astronomico di Trieste und Mitglied des Forscherteams. "Dabei düfte es sich um sehr junge und massereiche Sterne gehandelt haben, die nur ein Fünftausendstel des Alters unserer Sonne, dafür aber das Hundertfache ihrer Masse besessen haben. Diese Sterne könnten in der Lage gewesen sein, den Urnebel aufzulösen und das Universum durchsichtig zu machen."

Die extrem präzisen Messungen, die nötig wären, diese Hypothese zu bestätigen oder zu widerlegen, sind nur durch Beobachtungen vom Weltall aus oder mit dem geplanten European Extremely Large Telescope der ESO möglich, welches das größte Teleskop der Welt sein wird, wenn es im kommenden Jahrzehnt den Betrieb aufnimmt.

Die Untersuchung dieses frühen Abschnittes in der Geschichte des Kosmos stellt eine große Herausforderung dar, denn hierzu sind genaue Beobachtungen von extrem weit entfernten und schwachen Galaxien nötig. Diese Aufgabe kann nur von den leistungsfähigsten Teleskopen der Welt erfüllt werden. Für die hier vorgestellte Studie nutzte das Team das große Lichtsammelvermögen der 8,2-Meter-Teleskope des VLT. Damit wurden spektroskopische Untersuchungen von Galaxien durchgeführt, die zuvor anhand von Beobachtungen mit dem ESA/NASA-Weltraumteleskop Hubble und bei besonders tiefen Aufnahmen mit dem VLT identifiziert worden waren.

Endnoten

[1] Die am weitesten entfernte Galaxie mit spektroskopisch bestimmter Entfernung hat eine Rotverschiebung von 8,6,entsprechend einer Zeit von nur 600 Millionen Jahren nach dem Urknall (eso1041). Aus Beobachtungen mit dem Hubble-Weltraumteleskop wurde zwar auch ein Kandidat für eine Galaxie bei einer Rotverschiebung von etwa 10 (480 Millionen Jahre nach dem Urknall) identifiziert; diese Messung muss aber erst noch noch bestätigt werden. Die am weitesten entfernte Galaxie aus der hier vorgestellten Studie hat eine Rotverschiebung von 7,1, entsprechend 780 Millionen Jahren nach dem Urknall. Heute ist das Universum 13,7 Milliarden Jahre alt. Die neue Stichprobe von fünf bestätigten Galaxien mit Lyman-Alpha-Emission (aus insgesamt 20 Kandidaten) enthält die Hälfte aller bisher bei z>7 bekannten Galaxien.

[2] Zu der Zeit, in der sich die ersten Sterne und Galaxien bildeten, war das Universum mit elektrisch neutralem Wasserstoffgas angefüllt, das ultraviolettes Licht absorbierte. Das ultraviolette Licht dieser frühen Galaxien ionisierte das Gas und machte es so nach und nach für Ultraviolettstrahlung durchsichtig. Dieser Prozess wird als Reionisation bezeichnet, da es bereits innerhalb von etwa 100.000 Jahren nach dem Urknall eine kurze Ära gegeben hatte, während derer der Wasserstoff ebenfalls ionisiert war.

[3] Das Team hat den Einfluss des Wasserstoffnebels mittels Spektroskopie gemessen, also durch die Zerlegung des Lichtes der Galaxie in seine Spektralfarben, analog dazu, wie ein Prisma  Sonnenlicht in die Regenbogenfarben zerlegt.

[4] Das Team verwendete das VLT, um die Spektren von 20 Galaxien zu untersuchen, die Rotverschiebungen in der Nähe von 7 aufwiesen. Diese Kandidaten wurden aus tiefen Belichtungen von drei verschiedenen Himmelsarealen ausgewählt. Bei fünf von diesen 20 Galaxien wurde klar erkennbare Lyman-Alpha-Emission gefunden. Diese Untersuchung stellt die derzeit einzige Zusammenstellung von spektroskopisch bestätigten Galaxien bei Rotverschiebungen nahe z=7 dar.

[5] Da das Universum expandiert, wird auch die Wellenlänge von Licht auf seinem Weg durch den Raum gedehnt. Je weitere Strecken das Licht zwischen Lichtquelle und irdischem Beobachter zurücklegen muss, desto stärker wird seine Wellenlänge gedehnt. Da rotes Licht die längsten Wellenlängen aufweist, für die unsere Augen noch empfindlich sind, erscheinen uns weit entfernte Objekte gerötet. Daher wird der oben geschilderte Effekt als "Rotverschiebung" bezeichnet. Obwohl die Rotverschiebung technisch gesehen ein Maß dafür ist, wie stark sich die Farbe des Lichts eines Objekts geändert hat, kann sie ebenso als Maß für die Entfernung des Objektes sowie für die Zeit, in die wir zurück blicken, wenn wir das betreffende Objekt beobachten verwendet werden.

[6] Astronomen unterteilen Sterne in drei Kategorien, genannt Population I, Population II und Population III. Sterne der Population I, wie zum Beispiel unsere Sonne, enthalten viele schwere Elemente, die im Inneren von älteren Sternen und bei Supernovaexplosionen entstanden sind. Da sie sozusagen aus den Trümmern früherer Sterngenerationen bestehen, konnten Sterne dieser Population erst spät entstehen. Sterne der Population II besitzen weniger schwere Elemente. Sie bestehen hauptsächlich aus Wasserstoff, Helium und Lithium, aus Elementen also, die bereits kurz nach dem Urknall entstanden sind. Diese Sterne sind älter, aber dennoch gibt es auch heute noch viele von ihnen. Sterne der Population III konnten bislang nicht direkt beobachtet werden, aber man nimmt an, dass sie im frühen Universum existiert haben. Da für sie nur das Material direkt aus dem Urknall zur Verfügung stand, enthielten sie überhaupt keine schweren Elemente. Da diese schweren Elemente aber eine wichtige Rolle bei der Bildung von Sternen spielen, konnten damals nur sehr große Sterne mit sehr kurzen Lebensdauern entstehen. Daher haben alle Population III Sterne ihr Leben bereits in der Frühzeit des Universums mit Supernovaexplosionen beendet. Selbst bei Beobachtungen von sehr weit entfernten Galaxien konnten bisher keine Population III Sterne sicher nachgewiesen werden.

Weitere Informationen

Die hier vorgestellten Forschungsergebnisse erscheinen demnächst unter dem Titel „Spectroscopic Confirmation of z<7 LBGs: Probing the Earliest Galaxies and the Epoch of Reionization“ in der Fachzeitschrift The Astrophysical Journal.

Die beteiligten Wissenschaftler sind L. Pentericci (INAF Osservatorio Astronomico di Roma, Rom, Italien [INAF-OAR]),  A. Fontana (INAF-OAR), E. Vanzella (INAF Osservatorio Astronomico di Trieste, Triest, Italien [INAF-OAT]), M. Castellano (INAF-OAR), A. Grazian (INAF-OAR), M. Dijkstra (Max-Planck-Institut für Astrophysik, Garching, Germany), K. Boutsia (INAF-OAR), S. Cristiani (INAF-OAT), M. Dickinson (National Optical Astronomy Observatory, Tucson, USA), E. Giallongo (INAF-OAR), M. Giavalisco (University of Massachusetts, Amherst, USA), R. Maiolino (INAF-OAR), A. Moorwood (ESO, Garching) und P. Santini (INAF-OAR).

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Dr. Laura Pentericci
INAF Rome Astronomical Observatory
Rome, Italy
Tel: +39 06 94 286 450
E-Mail: laura.pentericci@oa-roma.inaf.it

Dr. Adriano Fontana
INAF Rome Astronomical Observatory
Rome, Italy
Tel: +39 06 94 286 456
E-Mail: adriano.fontana@oa-roma.inaf.it

Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
E-Mail: rhook@eso.org

Peter Habison (Pressekontakt Österreich)
ESO Science Outreach Network und stem & mint e.U. – Space and Science Communications
Vienna, Austria
Tel: +43 676 648 7003
E-Mail: eson-austria@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1138.

Über die Pressemitteilung

Pressemitteilung Nr.:eso1138de-at
Name:Galaxies, NTTDF-474
Typ:Early Universe : Galaxy
Early Universe : Cosmology
Facility:Very Large Telescope
Instruments:FORS2
Science data:2011ApJ...743..132P

Bilder

Artist’s impression of galaxies at the end of the era of reionisation (artist’s impression)
Artist’s impression of galaxies at the end of the era of reionisation (artist’s impression)
nur auf Englisch
A galaxy seen when the Universe was only 820 million years old
A galaxy seen when the Universe was only 820 million years old
nur auf Englisch
A galaxy seen when the Universe was only 840 million years old
A galaxy seen when the Universe was only 840 million years old
nur auf Englisch

Videos

Animation of artist’s impression of galaxies at the end of the era of reionisation
Animation of artist’s impression of galaxies at the end of the era of reionisation
nur auf Englisch

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

  • First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
  • Third-party cookies, set by a domain other than the one you are currently visiting.

As for their duration, cookies can be:

  • Browser-session cookies, which are deleted when the user closes the browser;
  • Stored cookies, which stay on the user's device for a predetermined period of time.

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.