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The physical properties and elemental abundances of the interstellar medium

in galaxies during cosmic reionization are important for understanding the

role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter

Array detection of an oxygen emission line at a wavelength of 88 µm from a

galaxy at an epoch about 700 million years after the Big Bang. The oxygen

abundance of this galaxy is estimated at about 1/10 of the Sun. The non-

detection of far-infrared continuum emission indicates a deficiency of inter-

stellar dust in the galaxy. A carbon emission line at a wavelength of 158 µm

is not detected either, implying an unusually small amount of neutral gas.

These properties might allow ionizing photons to escape into the intergalac-

tic medium.

The physical and chemical conditions of the interstellar medium (ISM) in galaxies can be

revealed with forbidden atomic emission lines from the warm-phase ISM, like ionized hy-

drogen (H II) regions and photodissociation regions (PDRs). A far-infrared (FIR) forbidden

emission line, the [C II] 158 µm line predominantly coming from PDRs, has been already

detected in many high-z objects (1, 2). Recent observations with the Atacama Large Mil-

limeter/submillimeter Array (ALMA) have revealed the [C II] line emission from young star-

forming galaxies emitting a strong hydrogen Lyα line, so-called Lyα emitters (LAEs), at red-

shift z ∼ 5–6 (3, 4). However, ALMA observations have also shown that LAEs at z > 6 have

at least an order of magnitude lower luminosity of the [C II] line than that expected from their

star formation rate (SFR) (4–7), suggesting unusual ISM conditions in these high-z LAEs (8).

Herschel observations of nearby dwarf galaxies, on the other hand, have revealed that a

forbidden oxygen line, [O III] 88 µm, is much stronger than the [C II] line in these chemically

unevolved galaxies (9–11). Infrared Space Observatory and AKARI have detected the [O III]

line from the Large Magellanic Cloud and from many nearby galaxies (12, 13). However, the
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[O III] line has rarely been discussed in a high-z context because of the lack of instruments

suitable to observe the redshifted line. Only a few detections from gravitationally lensed dusty

AGN/starburst galaxies at z ∼ 3–4 have been reported (14, 15) prior to ALMA. On the other

hand, simulations predict that ALMA will be able to detect the [O III] line from star-forming

galaxies with reasonable integration time even at z > 8 (16).

In order to examine the [O III] 88 µm line in high-z LAEs, we have performed ALMA ob-

servations of an LAE at z = 7.2, SXDF-NB1006-2, discovered with the Subaru Telescope (17).

We have also obtained ALMA data of the [C II] 158 µm line of this galaxy. The observations

and the data reduction are described in (18). The [O III] line is detected with a significance of

5.3σ (Figure 1A) and the obtained line flux is 6.2×10−21 W m−2 or the luminosity is 3.8×1035

W (Table 1). The [C II] line is not detected at the position of the [O III] emission line and

we take 3σ upper limit for the [C II] line flux as < 5.3 × 10−22 W m−2. However, we note a

marginal signal (3.5σ) which displays a spatial offset (≃ 0.′′4 ≃ 2 kpc in the proper distance)

from the [O III] emission (Figure S4). The continuum is not detected in either ALMA bands,

resulting in a 3σ upper limit of the total IR luminosity of < 2.9× 1037 W when assuming a dust

temperature of 40 K and an emissivity index of 1.5.

The spatial distribution of the ALMA [O III] emission overlaps with that of the Subaru

Lyα emission (Figure 1A) as expected because both emission lines are produced in the same

ionized gas. On the other hand, the Lyα emission is well resolved (the image resolution is 0.′′4)

and spatially more extended than the [O III] line. This is because Lyα photons suffer from

resonant scattering by neutral hydrogen atoms in the gas surrounding the galaxy. The systemic

redshift of the galaxy is estimated at z = 7.2120 ± 0.0003 from the [O III] emission line at an

observed wavelength of 725.603 µm. The Lyα line is located at ∆vLyα = (+1.1 ± 0.3) × 102

km s−1 relative to the systemic redshift (Figures 1C and S6). This velocity offset, caused by

scattering of neutral hydrogen, is relatively small compared to those observed in galaxies at
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z ∼ 2–3 (∆vLyα ∼ 300 km s−1), given the ultraviolet (UV) absolute magnitude of this galaxy

(MUV = −21.53 AB) (19–21). The observed small ∆vLyα of SXDF-NB1006-2 may indicate

an H I column density of NHI < 1020 cm−2 (21,22). SXDF-NB1006-2 is in the reionization era

where only the intergalactic medium (IGM) with a high hydrogen neutral fraction may cause a

∆vLyα ≃ +100 km s−1 as observed (23), implying an even smaller H I column density in the

ISM of this galaxy.

We have performed spectral energy distribution (SED) modeling in order to derive physical

quantities such as the SFR of SXDF-NB1006-2 (Table 1). In addition to broadband photometric

data of UKIRT J , H , and K, Spitzer 3.6 µm and 4.5 µm and Subaru narrowband photometry

NB1006 (Table S3), we have also used the [O III] line flux and the IR luminosity as constraints

(Figure 2 and SOM §3). The extremely blue rest-frame UV color of this galaxy (slope β <

−2.6 (3σ) estimated from J − H , where the flux density Fλ ∝ λβ), gives an age of ∼ 1 Myr

for the ongoing star formation episode. The non-detection of the dust IR emission suggests

little amount of dust and hence insignificant attenuation. The observed strong [O III] line flux

favors an oxygen abundance of 5% to 100% of the Sun, but rejects 2% and 200% of the Solar

abundance at > 95% confidence. The obtained oxygen abundance is similar to those estimated

in z ∼ 6–7 galaxies for which UV C III] and C IV emission lines were detected (24, 25). Since

the ∼ 1 Myr age is too short to produce the inferred oxygen abundance, the galaxy must have

had previous star formation episodes. Therefore, the derived stellar mass of ∼ 300 million solar

mass is regarded as a lower limit. We obtain a ∼ 50% escape fraction of hydrogen ionizing

photons to the IGM in the best-fit model. Such a high escape fraction, although still uncertain,

may imply a low H I column density of ∼ 1017 cm−2 (26) or porous structure in the ISM of the

galaxy.

The [O III]-to-far-UV luminosity ratio of SXDF-NB1006-2 is similar to those of nearby

dwarf galaxies with an oxygen abundance of 10% to 60% of the Sun (Figure 3A), suggesting
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that the oxygen abundance estimated from the SED modeling is reasonable and chemical en-

richment in this young galaxy has already proceeded. On the other hand, the dust IR continuum

and the [C II] line of SXDF-NB1006-2 are very weak compared to those of the nearby dwarf

galaxies (Figures 3B and 3C). The z ∼ 3–4 galaxies, from which the [O III] line was detected

previously, are IR luminous dusty ones (14, 15). Their [O III]-to-IR and [O III]-to-[C II] lu-

minosity ratios are similar to those of nearby spiral galaxies (10) and are at least one order

of magnitude smaller than those of SXDF-NB1006-2. The high [O III]-to-IR ratio of SXDF-

NB1006-2 despite of a similar degree of chemical enrichment (or so-called metallicity) to the

nearby dwarf galaxies indicates a very small mass fraction of dust in elements heavier than

helium (or dust-to-metal mass ratio) in SXDF-NB1006-2. The dust deficiency of this galaxy

is in contrast to the discovery of a dusty galaxy at z ≃ 7.5 (27), suggesting a diversity of the

dust content in the reionization epoch. Since the [C II] line predominantly arises in gas where

hydrogen is neutral, the non-detection of the [C II] line in SXDF-NB1006-2 suggests that this

young galaxy has little amount of the H I gas.

We have also compared the observed properties of SXDF-NB1006-2 with the galaxies at

z = 7.2 in a cosmological hydrodynamic simulation of galaxy formation and evolution (SOM

§4). We have found in the simulation several galaxies with a UV luminosity similar to that of

SXDF-NB1006-2 (Figure S10). Relative to these simulated galaxies, SXDF-NB1006-2 has the

highest [O III] line luminosity, a similar oxygen abundance and at least a factor of 2–3 lower dust

IR luminosity. This indicates a factor of > 2–3 smaller dust-to-metal mass ratio within the ISM

of SXDF-NB1006-2 than that in the simulated galaxies where we assumed the dust-to-metal

mass ratio of 50% as in the Milky Way ISM (28). Therefore, the dust-to-metal ratio of SXDF-

NB1006-2 is implied to be <20%. The dust-to-metal ratio is determined by two processes: dust

growth by accretion of atoms and molecules onto the existing grains in cold dense clouds, and

dust destruction by supernova (SN) shock waves consequent upon the star formation (28). The

5



dust-poor nature of SXDF-NB1006-2 may be explained by rapid dust destruction due to its high

SN rate or by slow accretion growth due to a lack of cold dense clouds in the ISM.

In the context of cosmic reionization studies, the most uncertain parameter is the prod-

uct of the escape fraction of ionizing photons and the emission efficiency of these photons:

fescξion (29). From the SED modeling, we have obtained log10(fescξion/Hz erg
−1) = 25.44+0.46

−0.84

for SXDF-NB1006-2 (SOM §5). This ionizing photon emission efficiency is strong enough to

reach (or even exceed) the cosmic ionizing photon emissivity at z ∼ 7 estimated from various

observational constraints on reionization (29) by an accumulation of galaxies which have al-

ready been detected (MUV < −17), although this does not rule out fainter, currently undetected

galaxies to contribute to the ionizing emissivity. The ISM properties of SXDF-NB1006-2, with

little amount of dust and H I gas, may make this galaxy a prototypical example of a source of

cosmic reionization.
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(Lyman limit) is σ = 6.3 × 10−18 cm2. Then, the H I column density for a 50% escape is

NHI = − ln 0.5/σ ≃ 1× 1017 cm−2 in a uniform medium.

27. D. Watson, et al., Nature 519, 327 (2015).

28. A. K. Inoue, Earth, Planets, and Space 63, 1027 (2011).

29. R. J. Bouwens, et al., Astrophys. J. 811, 140 (2015).

30. M. Asplund, N. Grevesse, A. J. Sauval, P. Scott, Ann. Rev. Astron. Astrophys. 47, 481

(2009).

31. J. P. McMullin, B. Waters, D. Schiebel, W. Young, K. Golap, Astronomical Data Anal-

ysis Software and Systems XVI, R. A. Shaw, F. Hill, D. J. Bell, eds. (2007), vol. 376 of

Astronomical Society of the Pacific Conference Series, p. 127.

32. N. Kashikawa, et al., Astrophys. J. 648, 7 (2006).
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Figure 1: [O III] 88 µm and Lyα emission images and spectra of SXDF-NB1006-2. (A)
The ALMA [O III] 88 µm image (contours) overlaid on the Subaru narrow-band Lyα image
(offsets from the position listed in Table 1). Contours are drawn at (−2, 2, 3, 4, 5)×σ, where
σ = 0.0636 Jy beam−1 km s−1. Negative contours are shown by the dotted line. The ellipse at
the bottom-left corner represents the synthesized beam size of ALMA. (B) The ALMA [O III]
88 µm spectrum with a 20 km s−1 resolution at the intensity peak position shown against the
relative velocity with respect to the redshift z = 7.2120 (blue dashed line). The best-fit Gaussian
profile for the [O III] line is overlaid. The r.m.s. noise level is shown by the dotted line. (C)
The Lyα spectrum (17) shown as a function of the relative velocity compared to the [O III] 88
µm line. The flux density is normalized by a unit of 10−18 erg s−1 cm−2 Å−1. The sky level on
an arbitrary scale is shown by the dotted line. The velocity intervals where Earth’s atmospheric
lines severely contaminate the spectrum are flagged (hatched boxes). The Lyα line shows a
velocity shift ∆v ≃ +110 km s−1 relative to the [O III] line (red dashed line).
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Scam/z’

A

NB1006 WFCAM/J WFCAM/H WFCAM/K IRAC/3.6 IRAC/4.5

Figure 2: Spectral energy distribution of SXDF-NB1006-2. (A) Thumbnail images (4′′×4′′,
north is up, east is to the left) in the Subaru/Suprime-Cam z′, NB1006, UKIRT/WFCAM J ,
H , K, and Spitzer/IRAC 3.6 µm and 4.5 µm bands, from left to right. (B) Near-infrared pho-
tometric data with the best-fit model. The bottom horizontal axis shows the wavelength in the
observer’s rest-frame but the upper axis shows that in the source rest-frame. The observations
are marked by the circles. The horizontal error-bars show the wavelength range of the band
filters. The vertical error-bars for detection bands represent ±1σ photometric uncertainties and
the downward arrows for non-detections represent the 3σ upper limits. The z′ point in gray is
not used for the model fit. The best-fit model spectrum is shown by the solid green line and the
corresponding magnitudes through the filters are indicated by the asterisks. (C) The observed
flux with the ±1σ uncertainty of the [O III] line and the best-fit model prediction (asterisk).
(D) The 3σ upper limit on the total infrared luminosity with a dust temperature of 40 K and
an emissivity index of 1.5 and the best-fit model prediction (asterisk; zero IR luminosity due to
absence of dust in the best-fit model).
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Figure 3: Comparisons of SXDF-NB1006-2 and other galaxies detected in the [O III]
line. The horizontal axis represents the oxygen abundance relative to the Sun on a logarithmic
scale: [O/H] = log10(nO/nH) − log10(nO/nH)⊙, where nO and nH are the number density of
oxygen and hydrogen atoms and the Solar abundance is assumed to be 12 + log10(nO/nH)⊙ =
8.69 (30). The circles with error-bars represent the data of nearby dwarf galaxies (9–11) and
the inverse triangles with error-bars are averages of nearby spiral galaxies (13). The arrows at
the right-side axis show luminosity ratios of z ∼ 3–4 dusty galaxies whose oxygen abundances
have not been measured yet (10, 14, 15). SXDF-NB1006-2 is the five-pointed stars with error-
bars. (A) The [O III]-to-far ultraviolet (FUV) luminosity ratio. The FUV luminosity is νLν at
about 1500 Å in the source rest-frame. (B) The [O III]-to-total infrared (IR) luminosity ratio.
The IR wavelength range is 8–1000 µm in the source rest-frame. Since the IR continuum of
SXDF-NB1006-2 is not detected, we show a 3σ lower limit with a dust temperature of 40 K
and an emissivity index of 1.5. (C) The [O III]-to-[C II] luminosity ratio. Since the [C II] 158
µm line of SXDF-NB1006-2 is not detected, we show a 3σ lower limit.
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Table 1: A summary of the observed and estimated properties of SXDF-NB1006-2.
Right Ascension (J2000) 2h18m56.536s (±0.002s)
Declination (J2000) −5◦19′58.87′′ (±0.02′′)
Redshift of [O III] 88 µm 7.2120± 0.0003
Lyα velocity shift (km s−1) (+1.1± 0.3)× 102

[O III] 88 µm luminosity (W) ∗ (3.8± 0.8)× 1035

[C II] 158 µm luminosity (W) ∗ < 3.2× 1034 (3σ)
Total IR luminosity (W) ∗ < 2.9× 1037 (3σ)
Oxygen abundance [O/H] −1.0+1.0

−0.3

Star formation rate (log10 M⊙ yr−1) † 2.54+0.17
−0.71

Star formation age (log10 yr) 6.00+1.00

Dust attenuation (EB−V mag) 0.00+0.04

Escape fraction of ionizing photons 0.54+0.17
−0.54

Stellar mass (log10 M⊙) † 8.54+0.79
−0.22

∗ Assuming a concordance cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7.
† M⊙ represents the Solar mass (1.989× 1030 kg.)
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Materials and Methods

1 ALMA observation and results

1.1 Observations and data reduction

The ALMA band 8 data of the [O III] 88 µm emission line (rest-frame frequency 3393.01 GHz)

redshifted to 413 GHz for the target galaxy, SXDF-NB1006-2, were obtained on 2015 June 7,

9 and 14 (cycle 2, project ID: 2013.1.01010.S, PI: A. K. Inoue). Thirty-seven to 41 operational

antennas were employed with the C34-6/7 array configuration, where the maximum and min-

imum baseline lengths were 783.5 m and 21.3 m, respectively. The correlator was configured

so that 400.1–403.6 and 412.1–414.0 GHz were covered by four spectral windows, each of

which was used in the Frequency Division Mode (FDM) with a 1.875 GHz bandwidth and a

7.8125 MHz (5.67 km s−1 at 413 GHz) resolution. A total of 2.0 hour was spent for on-source

integration under excellent atmospheric conditions with precipitable water vapors (PWVs) of

0.4–0.5 mm. The resulting spatial resolution with the natural weighting is 0.′′35× 0.′′26 (in full

width at half maximum (FWHM); position angle PA = +82◦), with the r.m.s. noise levels of

0.53 and 0.042 mJy beam−1, respectively, for the 20 km s−1 resolution cube and the continuum

image. Two quasars, J0241−0815 (S413GHz = 1.6 Jy, 6◦ away from the target) and J2232+1143

(0.3 Jy), and Ceres were used for complex gain, bandpass and flux calibration, respectively. The

flux calibration accuracy is estimated at 10%.

The band 6 data targeting the [C II] 158 µm line (the rest-frame frequency of 1900.54 GHz)

at 231 GHz for SXDF-NB1006-2 were obtained on 2014 August 1 and 5 (cycle 1, project ID:

2012.1.00374.S, PI: K. Ota), where 30–34 antennas were operational under the C32-5 configu-

ration (the maximum and minimum baseline lengths of 558.2 m and 17.2 m, respectively). The

correlator was configured to cover 215.7–219.5 and 230.4–234.2 GHz in the FDM 1.875 GHz

mode with a 0.488 MHz (0.63 km s−1 at 231 GHz) resolution. The conditions were reasonable
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(PWV = 1–2 mm) during the on-source time of 1.8 hour. The resulting synthesized beam size

(FWHM) with the natural weighting is 0.′′80 × 0.′′60 (PA = −81◦). The achieved noise levels

for the 20 km s−1 cube and the continuum image are 0.26 and 0.014 mJy beam−1, respectively.

Complex gain calibration was made using a nearby quasar J0215−0222 (S231 GHz = 0.06 Jy, 4◦

away from the target), while three quasars (J0006−0623, J0423−0120 and J0241−0815) were

used for bandpass calibration. Both Neptune and J0238+166 were used for flux calibration to

cross-check the amplitude scaling. The flux calibration accuracy is estimated at 8%.

We calibrated the raw visibility data in a standard manner using the CASA software (31)

version 4.3.1 and 4.2.1 for the [O III] and [C II] data, respectively, along with a standard cali-

bration script provided by the observatory. In addition to standard flagging such as shadowed

antennas, manual flagging has carefully been made for low-gain antennas and abnormal visibil-

ities. For the [O III] (band 8) data, Earth’s atmospheric ozone lines severely affect up to 10% of

the frequency coverage in 3 out of 4 spectral windows and are flagged properly, while the rest

of the spectral window where the [O III] line is expected does not suffer from the atmospheric

contamination and remains unflagged.

Imaging is carried out using a CASA task, clean, with the natural weighting to maximize

the point-source sensitivities. Continua are not subtracted in [O III] and [C II] imaging because

no continuum emission is found. As the [O III] emission is found to be marginally resolved with

the naturally-weighted beam (the intrinsic source size from a Gaussian fit of 0.′′4× 0.′′3, PA ≃

90◦), we also make a uv-tapered image with outertaper = 0.′′3 to achieve a good detection.

The resulting beam size is 0.′′45 × 0.′′38 (PA = +78◦). Synthesized-beam deconvolution was

made for the [O III] image using the CLEAN algorithm down to a 1.5σ level.
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1.2 Results
1.2.1 [O III] 88 µm line

The [O III] emission is detected at a significance of 5.3σ at the position where the Lyα emission

is detected (Figure 1A). The uv-tapered image is integrated over −300 to +230 km s−1 with

respect to the [O III] redshift of z[OIII] = 7.2120, which is obtained by a Gaussian fit to the

spectrum of a velocity resolution of 20 km s−1. The histogram of pixel signal-to-noise ratios

(SNRs) in the [O III] integrated intensity image (Figure S1) is well described by a Gaussian

(i.e., normal distribution) at the pixel values below SNR < 4, while the number of pixels with

positive fluxes surpasses that of the negative pixels at SNR > 4. This is due to the contribution

from the real [O III] emission line. To further test the significance of the detection, we separately

image the data taken during three independent tracks made on 2015 June 7, 9 and 14. The on-

source time of each track is 40 min. We find a ∼ 3σ peak at the position of SXDF-NB1006-2

in every image, demonstrating a robust detection of the [O III] line (Figure S2).

In the band 8 spectra at the intensity peak position, a narrow (FWHM of ≈ 80 km s−1) line

feature is evident at around 413.2 GHz (Figure S3B). This line feature is neither a collection

of spurious spikes nor a part of spectral baseline wiggles (Figure S3C). The redshift of the line

is measured as z[OIII] = 7.2120 ± 0.0003, slightly lower than the redshift determined from

the Lyα emission line (17). This redshift difference corresponds to a velocity offset of ≈ 110

km s−1 (§2.1), which is reasonably accounted for when the bluer (i.e., shorter-wavelength) part

of the Lyα emission line is attenuated by the IGM along the sightline, as reported for many Lyα

emitters at z ∼ 6–7 (17, 32), in addition to the ISM attenuation (19–21).

We measure the total flux density of the [O III] emission by fitting the tapered integrated

intensity image to a Gaussian using a CASA task, imfit, and deconvolving the clean beam to

derive the intrinsic source flux. Table S1 lists the integrated intensity (0.45 ± 0.09 Jy km s−1,

which corresponds to a flux of 6.2 × 10−21 W m−2) and luminosity (9.8 × 108 L⊙), where
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Figure S1: Histogram of pixel signal-to-noise ratios (SNRs) of the [O III] inte-
grated intensity map. The data are taken from the entire field of view of ALMA
band 8 observations. Positive flux values are shown by the red solid line, while neg-
ative values are shown by the blue dashed line. The histograms are well described
by a Gaussian up to SNRs around 4, whereas there is an excess in positive flux
values at SNR > 4, to which the [O III] emission contributes.

Figure S2: [O III] 88 µm integrated intensity maps of each observing date.
Every image shows a ∼ 3σ peak at the position where the [O III] line is found
(crosses), demonstrating the detection robustness. Contours start from 1σ with a
step of 1σ. The dotted contours show negative values. The ellipse at the bottom-left
corner on each panel indicates the ALMA beam size.
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Figure S3: [O III] 88 µm spectra at the intensity peak with different velocity
resolutions. From A to C, the velocity resolution is 35, 20 and 10 km s−1. The
dotted line is the r.m.s. noise level measured over each resolution element. In panel
A, the Lyα redshift is indicated with the upward arrow. The vertical bands in red,
green and blue represent the velocity intervals over which the integrated intensity
images shown in Figure S5 are integrated. In the panel B, we show the best-fit
Gaussian profile for the emission line. The FWHM is ≈ 80 km s−1.

6



Table S1: ALMA results of [O III] 88 µm and [C II] 158 µm lines of SXDF-NB1006-2.
[O III] 88 µm [C II] 158 µm

Integrated intensity (Jy km s−1) 0.45± 0.09 < 0.069 (3σ)
Flux calibration uncertainty 10% 8%

Flux (W m−2) (6.2± 1.4)× 10−21 † < 5.3× 10−22 (3σ)
Luminosity (L⊙) ∗ (9.8± 2.2)× 108 † < 8.3× 107 (3σ)

Beam-deconvolved source size 0.4′′ × 0.3′′ (PA ≃ 90◦) —
∗ Assuming a concordance cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7.

† Flux calibration uncertainty is included in the error.

L⊙ = 3.8 × 1026 W is the solar luminosity. The [O III] line luminosity is at the high end

of the detections made in local dwarf galaxies (11), normal spirals (13) and (ultra-)luminous

infrared galaxies (33), while it is an order of magnitude lower than (demagnified) [O III] line

luminosities found in gravitationally-lensed dusty starburst galaxies at 3 < z < 4 (14, 15).

1.2.2 [C II] 158 µm line

In the integrated intensity map of the [C II] emission summed over the same velocity range as

that of the [O III] image, we find no [C II] emission with a > 3σ significance around SXDF-

NB1006-2 (Figure S4A). Thus, we conclude that there is no significant [C II] line source inte-

grated over the same velocity range as the [O III] line at the position emitting the [O III] and

hydrogen Lyα lines. Thus, we place a 3σ upper limit on flux and luminosity for the [C II] line

(Table S1). On the other hand, we notice that when the band 6 cube is integrated over two

velocity ranges, −20 < v < 260 and 90 < v < 230 km s−1, low-significance (3.5σ and 3.7σ)

bumps appear close to the LAE (denoted as ‘NE’ and ‘SE’ in Figure S4B and S4C, respec-

tively). Unfortunately, the features are severely affected by the Earth’s atmospheric ozone line

at 231.28 GHz, which prevents us from judging whether or not these are spurious. Furthermore,

there are a few more 3σ–4σ enhancements remaining over the map (see a 3.9σ enhancement at

the northern edge of Figure S4A).
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Figure S4: [C II] 158 µm emission line integrated intensity maps of SXDF-
NB1006-2. (A) The integrated intensity image of the [C II] line over the same
velocity range as that of the [O III] line (−300 < v < +230 km s−1). The black
contours represent (±1, ±2, ±3, ...)×σ, where σ = 28 mJy beam−1 km s−1. Neg-
ative contours are shown by dotted lines. The white contours show the [O III] line
image and are drawn at 2σ and 4σ. No significant [C II] emission is found. (B) The
same as A but integrated over −20 < v < +260 km s−1 (σ = 23 mJy beam−1 km
s−1). The inset shows the spectrum at the marginal 3.5σ enhancement north-east to
the [O III] position (denoted as ‘NE’). The dotted line with gray shade shows the
1σ noise level. The frequency range where an atmospheric absorption line contami-
nates the spectrum is indicated by a hatched band. (C) The same as A but integrated
over +90 < v < +260 km s−1 (σ = 21 mJy beam−1 km s−1). The inset shows
the spectrum at the marginal 3.7σ enhancement south-east to the [O III] position
(denoted as ‘SE’).
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Table S2: ALMA results of the dust IR continuum of SXDF-NB1006-2.
Band 8 (735 µm) Band 6 (1.33 mm)

Flux density (mJy) < 0.12 (3σ) < 0.042 (3σ)
Dust temperature (K) Total infrared luminosity (L⊙, 3σ) ∗

30 < 9.0× 1010 < 3.8× 1010

40 < 1.1× 1011 < 8.3× 1010

50 < 1.7× 1011 < 1.7× 1011
∗ We assume a single-temperature modified blackbody with an emissivity index of 1.5 and a

concordance cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7.

1.2.3 Dust continuum

Continuum emission remains undetected in both the band 8 (735 µm) and band 6 (1.33 mm)

images. The 3σ upper limits measured for naturally-weighted images are 0.12 and 0.042 mJy at

735 µm and 1.33 mm, respectively. The total IR luminosity assuming a modified blackbody (34)

integrated over the rest-frame wavelengths of 8–1000 µm is estimated to be LTIR < 1×1011 L⊙,

where the dust temperature and emissivity index are assumed to be Tdust = 40 K and β = 1.5,

respectively. This limit can be relaxed to < 2 × 1011 L⊙ for a higher dust temperature of

Tdust = 50 K, while if the galaxy has cooler dust (Tdust = 30 K), the luminosity limit obtained

from the 1.33 mm photometry becomes more stringent (< 4×1010 L⊙). Table S2 is a summary

of these results. The emissivity index of 1.5 which we assumed is a typical value observed in

nearby star-forming galaxies (35). It is reported that the typical star-forming galaxies (L ∼ L∗)

at z ∼ 4 have Tdust ≃ 30 K (36). A bright LAE at z ≃ 7, Himiko (37), is estimated to

have Tdust = 30–40 K (38). We therefore assume Tdust = 40 K as a fiducial value for SXDF-

NB1006-2 in this paper. For this temperature, the effect of the cosmic microwave background

whose temperature is 22 K at z = 7.2 is small (39).
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1.2.4 Possible kinematics signature in the [O III] spectrum

The [O III] image (Figure 1A) is marginally resolved and likely elongated in the east–west direc-

tion. The beam-deconvolved source size, if the source is approximated by a two-dimensional

Gaussian, is estimated to be 0.′′4 × 0.′′3 in FWHM (PA ∼ 90◦), corresponding to a physical

scale of ≃ 2 × 1.5 kpc2. This extended structure may be attributed to high-velocity compo-

nents that are seen as red-shifted and blue-shifted marginal broad signals in the [O III] spec-

trum (Figure S3A). We made images of the central narrow component (−50 < v < +50

km s−1) and the red-shifted and blue-shifted marginal high-velocity components (50 < v < 230

km s−1 and −300 < v < −50 km s−1; Figure S5). Although the SNR is not high enough, it

seems that the high-velocity components are mostly overlapped but exhibit a small spatial off-

set of 0.′′3 (≃ 1.5 kpc), which is larger than the statistically-expected positional uncertainty

(≃ 0.5θ/SNR ≃ 0.05′′, where θ is the beam size).

A possible explanation of these marginal high-velocity component is rotating motion of

gravitationally-bounded gas, which is often observed in high-z massive galaxies (40, 41). A

dynamical mass is an order of Mdyn ∼ 1 × 105 v2circD M⊙, where vcirc = 0.75 ∆v (sin i)−1

is the circular velocity in units of km s−1 (∆v and i are, respectively, the line FWHM and

the inclination angle) and D is the diameter of the galaxy measured in kpc. If the possible

red/blue-shifted components of the [O III] line is produced by a rotating disk with a D ≃ 2

kpc and a velocity width of ∆v = 400 km s−1 (FWHM), the dynamical mass is estimated to be

Mdyn ∼ 5×1010 M⊙, where we assume that the galaxy is a circular disk and the intrinsic source

size gives the inclination angle, i.e., i = cos−1 (0.′′3/0.′′4). The dynamical mass is 2 orders of

magnitude larger than the best-fit stellar mass obtained from the SED fitting (§3.5). However,

it can not be excluded that a passive stellar population of < 5× 1010 M⊙ coexists with a young

starburst in SXDF-NB1006-2 (Figure S11). In a cosmological simulation (42, 43), galaxies at

z = 7.2 with similar UV luminosities to SXDF-NB1006-2 have a stellar mass of a few ×1010
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Figure S5: Spatial distribution of different velocity components of the [O III] 88
µm emission. Red and blue contours show the red-shifted (50 < v < 230 km s−1)
and blue-shifted (−300 < v < −50 km s−1) marginal components, respectively,
while white contours represent the narrow component (−50 < v < +50 km s−1)
which likely traces the systemic redshift of SXDF-NB1006-2. These velocities are
measured with respect to the [O III] line peak at z = 7.2120. Contours are drawn
at (±1, ±2, ±3, ...)×σ for the high-velocity components and (±2, ±3)×σ for the
narrow component for clarity. Negative contours are shown by the dotted lines. The
background image is the Subaru narrowband Lyα image (17). The ellipse at the
bottom-left corner represents the naturally-weighted beam size of ALMA.
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M⊙ (see §4, Figure S10) and a dark halo mass of a few ×1011 M⊙. Therefore, the high-velocity

component could be explained by rotational motion.

Another interpretation is violent motions such as outflows driven by stellar winds and su-

pernovae in the star forming region of SXDF-NB1006-2, which is probably seen as the narrow

component (FWHM of ≈ 80 km s−1). Yet another possibility is turbulent motion driven by,

for example, a merger event which might mimic the spatial offset, although we find a single

unresolved component in the J band image tracing the rest-frame UV continuum (Figure 2A).

However, we can not conclude the origin of the possible high-velocity components because of

the limited SNR for the moment.

2 Optical-to-near infrared data

The target galaxy, SXDF-NB1006-2, is in the Subaru/XMM-Newton Deep Survey Field (SXDF)

(44) where multi-wavelength deep observations have been carried out. We have gathered

archival optical-to-near infrared (NIR) deep images available in the SXDF: Subaru/Suprime-

Cam broadband z′ (45) and narrowband NB1006 (17), UKIRT/WFCAM broadband J , H , and

K taken in the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey (UDS) (46),

and Spitzer/IRAC 3.6 µm and 4.5 µm taken in the Spitzer Extended Deep Survey (SEDS) (47).

We measured the point spread functions (PSFs) using stellar objects in these images, resulting

in FWHMs of 1.′′0 (z′), 0.′′4 (NB1006), 0.′′8 (J , H , and K), and 1.′′8 (3.6µm and 4.5µm). Ex-

cept for the NB1006 image, the photometry was performed using 2×PSF (FWHM) apertures

because the object is almost unresolved or not detected. For the NB1006 image, we performed

Kron photometry (48) with the parameter k = 2 to obtain a total flux density from the spatially

extended Lyα emission. The photometric measurements are summarized in Table S3. The

magnitudes are the AB system (49).
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Table S3: Photometric data of SXDF-NB1006-2.
Band Wavelength (µm) PSF FWHM (′′) Magnitude (AB)
z′ 0.91 1.′′0 > 27.06 ∗

NB1006 1.00 0.′′4 24.50± 0.22 †

J 1.26 0.′′8 25.46± 0.18 ‡

H 1.65 0.′′8 > 25.64 ∗

K 2.23 0.′′8 > 25.84 ∗

IRAC3.6 3.54 1.′′8 > 24.64 ∗

IRAC4.5 4.49 1.′′8 > 24.26 ∗

∗ 3σ lower limit in 2×PSF circular aperture.
† Kron magnitude with a 2.′′64× 1.′′32 ellipse aperture.

‡ 2×PSF circular aperture.

2.1 Velocity offset between Lyα and [O III] lines

We have performed a profile fitting of the Lyα line with an asymmetric Gaussian function (21):

Fλ = A exp

[
−(λ− λ0)

2

2{σ + a(λ− λ0)}2

]
, (1)

where A is the peak flux, λ0 is the peak wavelength, σ is the line width, and a is the asymmetric

parameter. If a > 0, the blue part of the line profile is weakened as the Lyα line observed

in high-z (32). The usual Gaussian function is recovered with a = 0. First, we have made

a fitting with a Gaussian function and obtained the following results: A = (1.67 ± 0.15) ×

10−18 erg s−1 cm−2 Å−1, λ0 = 9987.51 ± 0.822 Å, and σ = 4.71 ± 0.42 Å (Figure S6).

The corresponding redshift is zLyα = 7.2156 ± 0.0007 (Gaussian fit). Next, we have made a

fitting with an asymmetric Gaussian function with a fixed σ = 4.71 Å from the Gaussian fit,

which is also consistent with the observed FWHM of the line (11.5 Å (17)). The results are

A = (1.65± 0.16)× 10−18 erg s−1 cm−2 Å−1, λ0 = 9986.67± 0.967 Å, and a = 0.169± 0.065

(Figure S6). The corresponding redshift is zLyα = 7.2150± 0.0008 (asymmetric Gaussian fit).

Assuming that the [O III] 88 µm line at z[OIII] = 7.2120 ± 0.0003 traces the systemic redshift,

we have obtained the velocity offset of the Lyα line ∆vLyα = +(1.1 ± 0.3) × 102 km s−1,

where we have corrected the Lyα redshift for the heliocentric motion of Earth at the observing
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Figure S6: Lyα line profile fitting results. The black solid line is the observed
spectrum and the red solid line is the best-fit profile with an asymmetric Gaussian
function expressed in equation (1). The cyan dashed line is the best-fit result with a
simple Gaussian function for a reference. The central wavelengths with their ±1σ
uncertainties are shown by the upward arrows with error-bars. The wavelength
range used in the fitting is 9975–9998 Å. The top horizontal axis is the velocity
shift relative to the systemic redshift z = 7.2120 measured from the [O III] 88 µm
line and corrected for the heliocentric motion of Earth.

date (+4 km s−1). Note that the ALMA spectrum of the [O III] line is already corrected for the

Earth’s motion in the data reduction process.

2.2 Empirical SFR estimation

We now estimate the SFR of SXDF-NB1006-2 with empirical relations. We assume a Salpeter

initial mass function (IMF) (50) with the mass range of 0.1–100 M⊙ throughout this paper.

There is a good correlation between the [O III] 88 µm line luminosity and the SFR derived

from the sum of the FUV and IR luminosities based on a large compilation of various kinds of

galaxies including nearby low-metallicity dwarfs, ULIRGs, AGNs, and high-z dusty starbursts
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Figure S7: Empirical relation between the SFR and the [O III] 88 µm line
luminosity (10). The best-fit relation with ±1σ standard deviation for a large com-
pilation of the data of various kinds of galaxies including low-metallicity nearby
dwarf galaxies (circles) and z ∼ 3–4 dusty starburst galaxies (diamonds) is shown
by the yellow line with the gray shade. The [O III] line luminosity with ±1σ uncer-
tainty of SXDF-NB1006-2 at z = 7.2 is shown by the horizontal blue line with the
orange shade. The crosses show SFRs estimated from the observed FUV luminosity
of the target galaxy, under various assumptions on the duration of star formation.
All the SFRs are calibrated to ones with the Salpeter IMF (50) with 0.1–100 M⊙.

(10). The [O III]–SFR relations for specific kinds of galaxies are slightly different from each

other. If we assume the relation derived from the entire sample of (10), we obtain a SFR > 100

M⊙ yr−1 for SXDF-NB1006-2 (Figure S7). On the other hand, the J band (i.e. rest-frame

≈ 1500 Å) luminosity of this galaxy indicates a SFR ∼ 10 M⊙ yr−1 with a standard FUV–SFR

conversion (51). This conversion assumes a constant SFR more than a few 100 Myr, while it

actually depends on the duration of star formation. If the star formation age is ∼ 1 Myr, we

indeed obtain ∼ 100 M⊙ yr−1 which is consistent with the estimation based on the [O III] line.

This suggests that the target galaxy is in a young violent star formation phase.
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3 Spectral energy distribution modeling

In order to derive physical properties of the galaxy, SXDF-NB1006-2, we have performed a

spectral energy distribution (SED) fitting (52, 53). This is based on a standard χ2 minimization

method:

χ2 =
N∑
i=1

(
Fi,model − Fi,obs

σi,obs

)2

, (2)

where Fi,model, Fi,obs, and σi,obs are the model flux density (or flux), the observed flux density

(or flux) and the observed uncertainty of ith data point, respectively. We have used not only

the broadband photometric data (J , H , K, IRAC3.6 and IRAC4.5) but also the narrowband

NB1006 photometry, the [O III] 88 µm line flux and the total IR flux upper limit as constraints.

For non-detection bands and the IR flux, we simply set Fi,obs = 0 and take their 3σ limits as

σi,obs. This treatment makes the fitting favor Fi,model below the 3σ limits for the non-detection

data. There are other choices to manage the non-detection data, for example, taking Fi,obs =

σi,obs = 1.5σ limit (option 2 of (54)) or a modification of equation (2) to treat the upper limits

(55). We have tried these two methods and found that the best-fit parameters do not change but

their 1σ ranges tend to be smaller. This is because the latter two methods put a larger weight

on the non-detection data. Thus, our approach above is more conservative than the latter two

methods. The z′ band which is severely affected by the intergalactic attenuation is omitted

because we have fixed the redshift to that of the [O III] line (z = 7.212) and the non-detection

in the z′ band does not have much information. Therefore, the number of the constraints is

N = 8.

3.1 Stellar continuum

We have adopted theoretical spectra generated with a public stellar population synthesis code

PEGASE VER. 2 (56). We assume metallicities of Z = 0.0004, 0.001, 0.002, 0.004, 0.008,

16



0.02, and 0.05 with a classical solar metallicity of Z = 0.02 (57). The stellar IMF is assumed to

be a standard Salpeter one (50) with the range of 0.1–100 M⊙. A constant star formation history

is also assumed for simplicity. In this case, the obtained age and stellar mass are regarded

as those of the most recent star formation episode. If the galaxy has previous star formation

episodes, the true age and stellar mass are larger than those obtained here. On the other hand,

for instantaneous quantities such as the SFR and dust attenuation, the assumption of a constant

SFR is valid in the sense of an average during the star formation episode. We have set a lower

limit of 1 Myr in the age. Metallicity evolution, gas infall, outflow, nebular emission, and dust

extinction have not been considered at this stage.

3.2 Nebular emission

The spectra of young star-forming galaxies are significantly affected by emission from ion-

ized gas, so-called nebular emission (58). We have added the nebular continuum (two-photon,

bound-free, and free-free continua) and 119 UV-to-optical (λ < 1 µm in the source rest-frame)

emission lines to the model spectra following the prescription of (59, 60). This emission line

model is based on a large set of calculations of H II regions using a public photoionization code,

CLOUDY (61) and reproduces the observed strengths of several prominent emission lines such

as [O III] λ5007 relative to the hydrogen Hβ line very well. For the [O III] 88 µm line, the

model presented in (16) is adopted. This [O III] line model is also made with CLOUDY and

agrees with the available observations of the [O III] 88 µm line very well (Figure S8).

We allow the escape of hydrogen ionizing photons (wavelength λ < 912 Å in the source

rest-frame; Lyman continuum) from H II regions and the surrounding ISM in the galaxy to the

IGM. Not only the stellar ionizing photons but also nebular bound-free ionizing photons can

escape to the IGM (59). We assume that both escapes happen with the same escape fraction,

fesc, defined as the number fraction of the escaped photons among the produced photons.
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Figure S8: Emissivity of the [O III] 88 µm line per a unit SFR as a
function of the oxygen abundance. The horizontal axis is the oxygen abun-
dance relative to that of the Sun ([O/H] = log10(nO/nH) − log10(nO/nH)⊙ with
12 + log10(nO/nH)⊙ = 8.69) (30). The data of nearby dwarf galaxies come from
observations with the Herschel satellite (9–11). The data of LMC and nearby spiral
galaxies as well as model predictions are taken from (16). We show the models with
the ionization parameter log10 U and the hydrogen atom density log10 nH noted in
the panel. The SFR is calibrated to ones with the Salpeter IMF with 0.1–100 M⊙.
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3.3 Dust attenuation and IR luminosity

We assume the Calzetti attenuation law (62, 63) for the attenuation by dust particles in the ISM

as a standard manner found in literature, while recent studies may suggest deviations from the

Calzetti law in high-z galaxies (3, 64). Fortunately, the obtained attenuation amount for the

target galaxy is small and the shape of the attenuation law would not affect the conclusions of

this paper.

The Calzetti law predicts about a factor of 2 higher attenuation for the nebular emission

than for the stellar continuum. This is because H II regions producing the nebular emission are

more deeply embeded in gas and dust clouds than stars observed in the UV wavelength. On

the other hand, such a difference between nebular and stellar emissions may not be supported

by observations of young star-forming galaxies (22, 65). We then introduce a parameter, Rgs ≡

(EB−V )gas/(EB−V )star, to describe this effect and assume Rgs = 1 or 2. The original Calzetti

law predicts Rgs = 2.3.

We assume that the radiation energy attenuated by dust is finally absorbed by dust in the

ISM and thermally re-emitted in the IR (i.e., we assume the energy scattered out to the IGM

to be negligible). This energy is compared to the total IR luminosity estimated with the dust

temperature of 40 K (Table 1), assuming the total dust emission comes only from the star-

forming regions of interest.

3.4 Lyα emission line

The narrowband NB1006 photometry is mainly determined by the Lyα emission line although

it also contains information of the UV continuum. Since Lyα photons suffer from resonant

scattering by neutral hydrogen, the transfer in the ISM is complex. In addition to the ISM, Lyα

photons are also scattered by neutral hydrogen in the IGM. Therefore, the observed Lyα flux

becomes F obs
Lyα = F int

LyαT
IGM
Lyα e−τ ISMLyα , where F int

Lyα is the intrinsic Lyα flux, τ ISMLyα and T IGM
Lyα are,
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respectively, the ISM optical depth and the IGM transmission for Lyα photons. Recent studies

of LAEs suggest that a simple recipe like the Calzetti law with Rgs ≃ 1 (i.e. (EB−V )gas =

(EB−V )stars) reasonably explains the Lyα optical depth in the ISM inferred from the Lyα line

profile (22). The IGM effect is more severe at higher redshift due to a higher neutral fraction in

the IGM. At redshift z ≃ 7.2, the neutral fraction, xHI, in the IGM is estimated to be ∼ 0.5 (66)

although it is still uncertain. According to a cosmological radiative transfer simulation, the Lyα

transmission through the IGM with an average xHI = 0.5 is T IGM
Lyα = 0.35+0.10

−0.15 (67). Since this

T IGM
Lyα range also covers a wide range of xHI = 0.2–0.8 (67), we assume that the T IGM

Lyα range

encloses the uncertainty of xHI.

3.5 Results

We use N = 8 observational constraints: 6 photometric data (NB1006, J , H , K, IRAC3.6

and IRAC4.5) and the [O III] 88 µm line flux and the total IR flux. On the other hand, there are

7 model parameters: the metallicity Z, the IGM Lyα transmission T IGM
Lyα , the dust attenuation

ratio of nebular to stellar emissions Rgs, the SFR, the age, the stellar dust attenuation (EB−V )star,

and the escape fraction of ionizing photons fesc. For the first 3 parameters, we fixed the values:

Z = 0.0004, 0.001, 0.002, 0.004, 0.008, 0.02(= Z⊙), or 0.05, T IGM
Lyα = 0.20, 0.30, 0.35, 0.40, or

0.45, and Rgs = 1 or 2. We then searched for the best set of the rest 4 parameters by a standard

χ2 method. The resultant best-fit values and their 68.4% ranges (i.e. ∆χ2 < 1) are summarized

in Table S4, where we only show the cases with Rgs = 1 but the Rgs = 2 cases are not very

different because of a very small dust attenuation.

We find that the minimum χ2 value is obtained with the metallicity Z = 0.002(= 0.1Z⊙)

but the 0.001 ≤ Z ≤ 0.02 cases give equally good fit results. On the other hand, the Z = 0.0004

and 0.05 cases are rejected at a > 95% confidence level, except for the case of Z = 0.0004 and

T IGM
Lyα = 0.20 which can be rejected at a ∼ 90%. Therefore, the galaxy, SXDF-NB1006-2, is
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likely to have a metallicity of 0.05 ≤ Z/Z⊙ ≤ 1.

The best-fit model is Z = 0.002, T IGM
Lyα = 0.40, log10(SFR/M⊙ yr−1) = 2.54, the age of

1 Myr, no dust attenuation, and fesc = 0.54, which is shown in Figures 2B–2D. The obtained

1 Myr age is in fact the lower limit of the population synthesis model. This shortest age is

favored by the very blue UV color of the galaxy (J − H < −0.18 corresponding to the UV

slope β < −2.6 [3σ]). This blue UV color also favors small dust attenuation but the upper limit

of the dust IR luminosity gives a stronger constraint on the dust attenuation (see Figure S9 and a

discussion below). If we fix Z and T IGM
Lyα ≥ 0.30, a non-zero fesc tends to be favored. However,

there are many sets of Z and T IGM
Lyα giving χ2 as good as the best-fit case statistically. We derive

the 68.4% ranges of each parameters (i.e. ∆χ2 < 1) among all cases examined with Rgs = 1.

The results are as follows: 1.83 ≤ log10(SFR [M⊙ yr−1]) ≤ 2.71, 6.00 ≤ log10(t [yr]) ≤

7.00, 0.00 ≤ (EB−V )star < 0.04, and 0.00 ≤ fesc ≤ 0.71. For the stellar mass, we find

log10(Mstar/M⊙) = 8.53 as the best-fit and the 68.4% range of 8.32 ≤ log10(Mstar/M⊙) < 9.33

as a joint constraint of log10(SFR [M⊙ yr−1]) and log10(t [yr]) (i.e. ∆χ2 < 2.3).

The [O III] 88 µm line flux is the most powerful constraint in the SED modeling of SXDF-

NB1006-2 (Figure S9). Without the [O III] line, we cannot obtain any meaningful constraint on

the metallicity, whereas using the [O III] line, we can reject the most metal-poor and metal-rich

cases examined (i.e. Z = 0.0004 and 0.05). The [O III] line also improves the constraints on

other parameters dramatically, although the best-fit values of the SFR, age, and dust attenua-

tion are not very different regardless of the sets of the data used in the fitting. Generally, less

data give a weaker convergence around the best-fit values as expected. When we use only the

broadband data as constraints, only a few models are rejected. The IR luminosity limit greatly

improves the constraint on the dust attenuation (Figure S9C). Using the narrowband NB1006

which includes the Lyα line slightly improves overall constraints.
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Table S4: A summary of SED fitting results.
Z T IGM

Lyα log10(SFR [M⊙ yr−1]) log10(t [yr]) (EB−V )star fesc χ2
min

0.0004 0.45 2.83+0.10
−0.12 6.00+0.00

−0.00 0.08+0.02
−0.03 0.44+0.14

−0.16 9.376
0.0004 0.40 2.83+0.09

−0.14 6.00+0.00
−0.00 0.08+0.01

−0.03 0.40+0.14
−0.18 8.417

0.0004 0.35 2.79+0.11
−0.12 6.00+0.00

−0.00 0.07+0.02
−0.02 0.34+0.15

−0.17 7.331
0.0004 0.30 2.75+0.13

−0.12 6.00+0.00
−0.00 0.06+0.02

−0.02 0.28+0.16
−0.18 6.258

0.0004 0.20 2.65+0.15
−0.11 6.00+0.00

−0.00 0.04+0.02
−0.02 0.09+0.20

−0.09 4.035
0.0010 0.45 2.74+0.10

−0.15 6.00+0.00
−0.00 0.05+0.01

−0.03 0.52+0.10
−0.14 3.304

0.0010 0.40 2.70+0.11
−0.14 6.00+0.00

−0.00 0.04+0.02
−0.02 0.49+0.10

−0.15 2.855
0.0010 0.35 2.66+0.13

−0.14 6.00+0.00
−0.00 0.03+0.02

−0.02 0.44+0.13
−0.15 2.481

0.0010 0.30 2.61+0.15
−0.14 6.00+0.00

−0.00 0.02+0.02
−0.02 0.38+0.15

−0.15 2.166
0.0010 0.20 2.53+0.14

−0.25 6.00+0.30
−0.00 0.00+0.03

−0.00 0.26+0.16
−0.26 1.871

0.0020 0.45 2.58+0.14
−0.18 6.00+0.30

−0.00 0.01+0.03
−0.01 0.57+0.11

−0.14 1.695
0.0020 0.40 2.54+0.14

−0.20 6.00+0.30
−0.00 0.00+0.04

−0.00 0.54+0.12
−0.18 1.629

0.0020 0.35 2.54+0.13
−0.28 6.00+0.30

−0.00 0.00+0.03
−0.00 0.52+0.11

−0.25 1.694
0.0020 0.30 2.34+0.30

−0.25 6.30+0.30
−0.30 0.01+0.03

−0.01 0.34+0.27
−0.29 1.890

0.0020 0.20 2.09+0.31
−0.11 6.48+0.22

−0.18 0.00+0.02
−0.00 0.02+0.38

−0.02 2.075
0.0040 0.45 2.30+0.29

−0.30 6.30+0.40
−0.30 0.00+0.03

−0.00 0.50+0.21
−0.30 1.701

0.0040 0.40 2.31+0.12
−0.46 6.30+0.70

−0.00 0.00+0.03
−0.00 0.50+0.11

−0.50 1.710
0.0040 0.35 2.11+0.29

−0.30 6.48+0.60
−0.18 0.00+0.03

−0.00 0.31+0.28
−0.31 1.875

0.0040 0.30 2.11+0.25
−0.30 6.48+0.52

−0.18 0.00+0.02
−0.00 0.28+0.27

−0.28 1.955
0.0040 0.20 1.94+0.24

−0.10 6.70+0.26
−0.22 0.00+0.01

−0.00 0.03+0.34
−0.03 2.981

0.0080 0.45 2.31+0.30
−0.30 6.30+0.40

−0.30 0.01+0.03
−0.01 0.43+0.25

−0.35 1.847
0.0080 0.40 2.27+0.31

−0.34 6.30+0.48
−0.30 0.00+0.03

−0.00 0.39+0.26
−0.39 1.779

0.0080 0.35 2.27+0.27
−0.37 6.30+0.54

−0.30 0.00+0.03
−0.00 0.37+0.23

−0.37 1.790
0.0080 0.30 2.07+0.29

−0.17 6.48+0.30
−0.18 0.00+0.02

−0.00 0.13+0.34
−0.13 1.954

0.0080 0.20 1.99+0.32
−0.07 6.60+0.10

−0.30 0.00+0.01
−0.00 0.00+0.40

−0.00 2.974
0.0200 0.45 2.44+0.12

−0.38 6.00+0.48
−0.00 0.00+0.03

−0.00 0.52+0.11
−0.43 1.667

0.0200 0.40 2.45+0.09
−0.50 6.00+0.70

−0.00 0.00+0.03
−0.00 0.51+0.10

−0.51 1.845
0.0200 0.35 2.20+0.30

−0.27 6.30+0.40
−0.30 0.00+0.03

−0.00 0.26+0.32
−0.26 1.771

0.0200 0.30 2.02+0.45
−0.08 6.48+0.22

−0.48 0.00+0.02
−0.00 0.01+0.52

−0.01 1.937
0.0200 0.20 2.04+0.22

−0.07 6.48+0.12
−0.18 0.00+0.01

−0.00 0.00+0.32
−0.00 3.001

0.0500 0.45 2.60+0.10
−0.11 6.00+0.00

−0.00 0.08+0.02
−0.03 0.79+0.05

−0.06 13.145
0.0500 0.40 2.60+0.10

−0.12 6.00+0.00
−0.00 0.08+0.02

−0.03 0.77+0.06
−0.08 12.067

0.0500 0.35 2.60+0.09
−0.12 6.00+0.00

−0.00 0.08+0.02
−0.03 0.74+0.07

−0.08 10.855
0.0500 0.30 2.57+0.11

−0.10 6.00+0.00
−0.00 0.07+0.02

−0.02 0.71+0.07
−0.09 9.498

0.0500 0.20 2.54+0.09
−0.12 6.00+0.00

−0.00 0.06+0.02
−0.02 0.62+0.08

−0.10 6.311
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Figure S9: Visualizations of SED fitting results. (A) The SFR ranges within
∆χ2 < 2.30 (a ±1σ range for two parameters) from the best-fit models whose
locations are shown by the crosses. The black, red, green and blue colors repre-
sent the cases using only broadband (BB) photometries (J , H , K, IRAC3.6, and
IRAC4.5), BB + the infrared (IR) luminosity limit, BB + IR + the narrowband (NB)
photometry (NB1006), and BB + IR + NB + the [O III] line, respectively. The most
metal-poor and metal-rich models were rejected in the last case. (B) The same as
A but for the star formation age. (C) The same as A but for the dust attenuation for
stars. (D) The same as A but for the escape fraction of ionizing photons.
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4 Comparison with a cosmological simulation

We now compare SXDF-NB1006-2 with galaxies in a large cosmological hydrodynamic simu-

lation of galaxy formation and evolution (42,43) which reproduces the observed UV luminosity

functions and UV colors of Lyman break galaxies at z ∼ 7–10 very well. Comparing SXDF-

NB1006-2 with the galaxies taken from the simulation output at z=7.22, we discuss implications

on the physical and chemical properties of the target galaxy. A brief explanation of the simula-

tion is as follows, while further details of the simulation are found in (42, 43). The simulation

code we used is GADGET-3: an updated version of GADGET-2 (68). The physical recipes de-

scribing the star formation, chemical evolution, supernovae and radiation feedback (69–71) are

implemented. We employ 2 × 6403 particles for dark matter and gas in a comoving volume of

100h−1 Mpc cube. The mass of a dark matter particle is 2.84 × 108h−1 M⊙ and the mass of a

gas particle is initially 5.17 × 107h−1 M⊙. The softening length for the gravitational force is

set to be 6.0h−1 comoving kpc. The gas particles may form star particles if the star formation

criteria are satisfied. We also implement the emission line model (16, 60) into the simulation,

assuming the zero escape of ionizing photons.

Comparisons of SXDF-NB1006-2 with the z = 7.22 galaxies taken from the simulation

(Figure S10) show that there are five galaxies with similar UV luminosities to that of SXDF-

NB1006-2 (panels A–C). The [O III] line luminosity of SXDF-NB1006-2 is very close to the

two highest ones among the five. The SFRs of the two simulated galaxies are 51 and 92 M⊙

yr−1, whereas the SFR of SXDF-NB1006-2 is estimated at ∼ 300 M⊙ yr−1 from the SED

modeling. The best-fit SED model suggests a ∼ 50% escape of ionizing photons, indicating

a factor of ∼ 2 reduction of the [O III] line luminosity per SFR in SXDF-NB1006-2. This

partly accounts for the SFR difference in spite of similar [O III] line luminosities. In any case,

SXDF-NB1006-2 seems to be in an intense starburst phase which enhances the [O III] line
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Figure S10: Comparisons of SXDF-NB1006-2 with galaxies in a cosmologi-
cal hydrodynamic simulation. Panels A–C show the [O III] 88 µm line luminosity,
the dust IR luminosity, and the oxygen abundance (or metallicity), respectively, as a
function of the absolute UV magnitude uncorrected for the dust attenuation. Panels
D–F are the same as A–C but as a function of the stellar mass. The circles with
error-bars are the data of SXDF-NB1006-2; we take a 3σ upper limit for the dust
IR luminosity with an dust temperature of 40 K and an emissivity index of 1.5. The
stellar mass obtained from the SED fitting should be regarded as a lower limit be-
cause of our simple constant star formation history. The plus marks are galaxies at
z = 7.22 taken from the simulation (43).
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Figure S11: Comparison of spectral energy distributions. The cir-
cles with the error-bars are the data of SXDF-NB1006-2. The green
solid line is the best-fit model and the asterisks are those convolved with
the filter response curves. The magenta solid line shows a maximally
possible passive stellar population (M∗ = 5× 1010 M⊙ and age of 700
Myr). The squares connected with lines are the five simulated galaxies
having a similar UV luminosity to SXDF-NB1006-2.

luminosity.

We also find that the average of the IR luminosities of the five simulated galaxies are 0.5

dex higher than the 3σ upper limit of SXDF-NB1006-2 (panel B), suggesting that the target

galaxy has much less dust than the simulated galaxies. In fact, these simulated galaxies have

(EB−V )star = 0.15, whereas that of SXDF-NB1006-2 is less than 0.04 mag from the SED

fitting. On the other hand, the metallicity of SXDF-NB1006-2 is similar to or higher than those

of the five (panel C). These indicates that SXDF-NB1006-2 has a much less dust-to-metal mass

ratio than the simulated galaxies where we have assumed the ratio to be 0.5 as in the ISM of the

Milky Way (72) and of the Solar neighborhood (73).

The stellar mass of SXDF-NB1006-2 obtained from the SED fitting is an order of mag-

nitude smaller than those expected in the simulation (panels D–F). This small stellar mass is

mainly due to the very short age (∼ 1 Myr) which is constrained from the blue UV color of
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the galaxy. Indeed, the observed UV color of SXDF-NB1006-2 is much bluer than those of

the five simulated galaxies (Figure S11). However, it is still possible that in addition to the

∼ 1 Myr starburst, SXDF-NB1006-2 has an underlying passive stellar population with a stellar

mass of < 5× 1010 M⊙ and an age of 700 Myr (≈ the age of the Universe at z = 7.2) without

violating the Spitzer data at 3.6 µm and 4.5 µm (Figure S11). Even in this case, the blue UV

color of SXDF-NB1006-2 is not affected by this passive stellar population and the conclusion

that SXDF-NB1006-2 is a very young starburst and has little dust content is preserved.

5 Ionizing photon emission efficiency

There is an important quantity in the context of cosmic reionization: the ionizing photon injec-

tion rate into the IGM per unit UV luminosity density of galaxies (29). This can be expressed

as

fescξion = fesc

(
QH

SFR

)
SFR

Lobs
ν1500

, (3)

where (QH/SFR) is the intrinsic production rate of hydrogen ionizing photons (λ < 912 Å)

per a unit SFR and Lobs
ν1500

is the luminosity density at UV (λ ∼ 1500 Å in the source rest-

frame). We estimate this rate for SXDF-NB1006-2. For the stellar population corresponding

to the best-fit model with Z = 0.002 and the 1 Myr age, (QH/SFR) = 2.58 × 1052 s−1.

Different metallicities cause only 0.03 dex variation. However, the star formation age affects

the production rate; a constant SFR of 10 Myr (+1σ age) gives a 0.40 dex larger production

rate. If we adopt the best-fit stellar population and uncertainties of the SFR and fesc in the case

of T IGM
Lyα = 0.40 (Table S4), we obtain log10(fescξion/Hz erg

−1) = 25.44+0.18
−0.26 by using an error

propagation formula for the logarithm. If we adopt the uncertainties of the final estimates of the

SFR and fesc (Table 1) and take into account the 0.40 dex upward uncertainty caused by the star

formation age, we obtain log10(fescξion/Hz erg
−1) = 25.44+0.46

−0.84.

We compare the obtained ionizing photon injection rate per UV luminosity density for

27



SXDF-NB1006-2 with that required to reproduce the comoving volume emissivity of ionizing

photons of log10(Ṅion[s
−1 Mpc−3]) = 50.79 ± 0.06 at z ∼ 7 which is estimated from various

observational constraints on cosmic reionization with a parametric expression of the Ṅion evolu-

tion (29). Since the photon injection rate is given by log10(fescξion) = log10(Ṅion)− log10(ρUV),

where ρUV is the comoving UV luminosity density, we need to integrate a UV luminosity func-

tion. Here we consider two UV luminosity functions at z ∼ 7 reported by (74) and (75). We

have performed a set of Monte Carlo realizations of Schechter function fits to the luminosity

functions fluctuated based on the quoted uncertainties and obtained a set of ρUV as a function

of a faint-limit of MUV by integrating the best-fit Schechter function in each realization. We

have also taken into account the uncertainty of the ionizing photon emissivity, log10(Ṅion), in

the procedure to obtain the emission efficiency, log10(fescξion). Finally, we have calculated the

mean and standard deviation of log10(fescξion) among the Monte Carlo realizations as a function

of the faint MUV limit.

From this comparison (Figure S12), we find that it is difficult to reproduce the ionizing

photon emissivity at z ∼ 7 only by galaxies brighter than SXDF-NB1006-2 (MUV = −21.53),

even if these galaxies emit ionizing photons as strong as that galaxy, because of the small

number density of such bright galaxies. On the other hand, if galaxies with MUV < −17, which

are already detected in deep HST surveys, have an ionizing photon emission efficiency similar

to SXDF-NB1006-2, the ionizing photon emissivity is likely to be achieved or even exceeded by

0.4–0.6-dex. However, if objects emitting ionizing photons as strong as SXDF-NB1006-2 are

rare among galaxies with MUV < −17, fainter, currently undetected galaxies should contribute

to the cosmic ionizing photon emissivity.
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Figure S12: Comparison of ionizing photon injection rates into the
IGM per UV luminosity density. The red and green shades show the
rates required to match the cosmic ionizing photon emissivity estimated
at z ∼ 7 (29), when we integrate the UV luminosity function of (74)
(denoted as B15LF) or (75) (denoted as F15LF), respectively, down to
the faint UV magnitude limit indicated on the horizontal axis. The rate
obtained from SXDF-NB1006-2 is shown by a five-pointed-star with
error-bars. The smaller error-bars show the case with the best-fit stellar
population and T IGM

Lyα = 0.40, but the larger error-bars show the case
considering all uncertainties in our estimates. The vertical dotted line
at MUV = −17 indicates a detection limit with HST/WFC3 (74). The
open star with error-bars shows the data of SXDF-NB1006-2 at the HST
detection limit for a reference.
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