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ABSTRACT

This paper presents the data recently released for the XMM-Newton/WFI survey carried out as part of the ESO Imaging Survey (EIS) project.
The aim of this survey is to provide optical imaging follow-up data in BVRI for identification of serendipitously detected X-ray sources in
selected XMM-Newton fields. In this paper, fully calibrated individual and stacked images of 12 fields as well as science-grade catalogs
for the 8 fields located at high-galactic latitude are presented. These products were created, calibrated and released using the infrastructure
provided by the EIS Data Reduction system and its associated EIS/MVM image processing engine, both of which are briefly described here.
The data covers an area of ∼3 square degrees for each of the four passbands. The median seeing as measured in the final stacked images is
0.′′94, ranging from 0.′′60 and 1.′′51. The median limiting magnitudes (AB system, 2′′ aperture, 5σ detection limit) are 25.20, 24.92, 24.66,
and 24.39 mag for B-, V-, R-, and I-band, respectively. When only the 8 high-galactic latitude fields are included these become 25.33, 25.05,
25.36, and 24.58 mag, in good agreement with the planned depth of the survey. Visual inspection of images and catalogs, comparison of
statistics derived from the present data with those obtained by other authors and model predictions, as well as direct comparison of the results
obtained from independent reductions of the same data, demonstrate the science-grade quality of the automatically produced final images and
catalogs. These survey products, together with their logs, are available to the community for science exploitation in conjunction with their
X-ray counterparts. Preliminary results from the X-ray/optical cross-correlation analysis show that about 61% of the detected X-ray point
sources in deep XMM-Newton exposures have at least one optical counterpart within 2′′ radius down to R � 25 mag, 50% of which are so faint
as to require VLT observations thereby meeting one of the top requirements of the survey, namely to produce large samples for spectroscopic
follow-up with the VLT, whereas only 15% of the objects have counterparts down to the DSS limiting magnitude.
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1. Introduction

The new generation of highly sensitive X-ray observatories
such as Chandra and XMM-Newton is generating large vol-
umes of X-ray data, which through public archives are made
available for all researchers. Even though all observations are

� Based on observations carried out at the European Southern
Observatory, La Silla, Chile under program Nos. 170.A-0789,
70.A-0529, 71.A-0110.
�� Appendices A to D and Fig. 1 are only available in electronic form
at http://www.edpsciences.org

targeting a particular object, the large field of view (FOV) of
XMM-Newton allows many other sources to be detected in
deep exposures. These sources are the main product of the
XMM-Newton Serendipitous Sky Survey (Watson et al. 2001),
which annually identifies about 50 000 new X-ray sources.
To fully understand the nature of these serendipitously de-
tected sources follow-up observations at other wavelengths are
needed.

Based on a Call for Ideas for public surveys to the ESO
community, the XMM-Newton Survey Science Center (SSC)
proposed optical follow-up observations of XMM-Newton
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Table 1. Central positions in right ascension, declination and galactic longitude and latitude of the 12 XMM-Newton fields observed as part of
the XMM-Newton follow-up survey.

Field Target α (J2000.0) δ (J2000.0) l b
XMM-01 RX J0925.7−4758 09:25:46.0 −47:58:17 271:21:18 +01:53:03
XMM-02 RX J0720.4−3125 07:20:25.1 −31:25:49 244:09:28 −08:09:50
XMM-03 HE 1104−1805 11:06:33.0 −18:21:24 270:49:55 +37:53:29
XMM-04 MS 1054.4−0321 10:56:60.0 −03:37:27 256:34:30 +48:40:18
XMM-05 BPM 16274 00:50:03.2 −52:08:17 303:26:03 −64:59:19
XMM-06 RX J0505.3−2849 05:05:20.0 −28:49:05 230:39:29 −34:36:50
XMM-07 LBQS 2212−1759 22:15:31.7 −17:44:05 39:16:07 −52:55:44
XMM-08 NGC 4666 12:45:08.9 −00:27:38 299:25:55 +63:17:22
XMM-09 QSO B1246−057 12:49:13.9 −05:59:19 301:55:40 +56:52:43
XMM-10 PB 5062 22:05:09.8 −01:55:18 58:03:55 −42:54:13
XMM-11 Sgr A 17:45:40.0 −29:00:28 359:56:39 −00:02:45
XMM-12 WR 46 12:05:19.0 −62:03:07 297:33:23 +00:20:14

fields for its X-ray Identification (XID) program (Watson et al.
2001; Barcons et al. 2002; Della Ceca et al. 2004). This pro-
posal was evaluated and accepted by ESO’s Survey Working
Group (SWG) and turned into a proposal for an ESO large pro-
gram submitted to the ESO OPC1.

The XMM-Newton optical follow-up survey aims at ob-
taining optical observations of XMM-Newton Serendipitous
Sky Survey fields, publicly available in the XMM-Newton
archive, using the wide-field imager (WFI) at the ESO/MPG
2.2 m telescope at the La Silla Observatory. WFI has a FOV
which is an excellent match to that of the X-ray detectors on-
board the XMM-Newton satellite, making this instrument an
obvious choice for this survey in the South. A complemen-
tary multiband optical imaging program (to median 5σ limiting
magnitudes reaching i′ = 23.1) for over 150 XMM-Newton
fields is nearing completion in the North using the similarly
well matched Wide Field Camera on the 2.5 m Isaac Newton
Telescope (Yuan et al. 2003; Watson et al. 2003). In order to
provide data for minimum spectral discrimination and photo-
metric redshift estimates of the optical counterparts of previ-
ously detected X-ray sources, the survey has been carried out
in the B-, V-, R-, and I-passbands. The survey has been admin-
istered and carried out by the ESO Imaging Survey (EIS) team.

This paper describes observations, reduction, and science
verification of data publicly released as part of this follow-
up survey. Section 2 briefly describes the X-ray observations
while Sect. 3 focus on the optical imaging. In Sect. 4 the re-
duction and calibration of optical data are presented and the
results discussed. Final survey products such as stacked im-
ages and science-grade catalogs extracted from them are pre-
sented in Sect. 5. The quality of these products is evaluated in
Sect. 6 by comparing statistical measures obtained from these
data to those of other authors as well as from a direct compar-
ison with the results of an independent reduction of the same
dataset. In this section the results of a preliminary assessment
of X-ray/optical cross-correlation are also discussed. Finally, in
Sect. 7 a brief summary of the paper is presented.

1 The full text of the large program proposal is available at
http://www.eso.org/science/eis/documents/
EIS.2002-09-04T12:42:31.890.ps.gz

2. X-ray observations

The original proposal by the SWG to the ESO OPC was
to cover a total area of approximately 10 square degrees
(40 fields) to a limiting magnitude of 25 (AB, 5σ, 2 ′′ aperture).
The OPC approved enough time to observe 12 fields, later ex-
tending the time allocation to include 3 more fields. This paper
presents results for the original 12 fields for which the optical
data were originally publicly released in the fall of 2004, with
corrections to the weight maps released in July 2005. Table 1
gives the location of the 12 fields listing: in Col. 1 the field
name; in Col. 2 the original XMM-Newton target name; in
Cols. 3 and 4 the right ascension and declination in J2000; and
in Cols. 5 and 6 the galactic coordinates, l and b.

The 12 fields listed in Table 1 were selected and prioritized
by a collaboration of interested parties from the SSC, a group
at the Institut für Astrophysik und Extraterrestrische Forschung
(IAEF) of the University of Bonn, and an appointed committee
of the SWG. These fields were selected following, as much as
possible, the criteria given in the proposal, namely that: (1) the
fields had to have a large effective exposure time in X-ray (ide-
ally texp > 30 ks) with no enhanced background; (2) the X-ray
data of the selected fields had to be public by the time the
raw WFI frames were to become public; (3) the original tar-
gets should not be too bright and/or extended, thus allowing
a number of other X-ray sources to be detected away from the
primary target; and (4) ∼70% of the fields had to be located at
high-galactic latitude. Comments on the individual fields can
be found in Appendix A.

Combined EPIC X-ray images for the fields listed in
Table 1 were created from exposures taken with the three cam-
eras (PN, MOS1, MOS2) on-board XMM-Newton. The sen-
sitive area of these cameras is a circle with a diameter of
approximately 30′. The contributing X-ray observations are
summarized in Table 2 which gives for each field: in Col. 1
the field identification; in Col. 2 the XMM-Newton observa-
tion id; in Col. 3 the nominal exposure time; in Cols. 4–6 the
settings for each of the cameras. Here (E)FF indicates (ex-
tended) full frame readout, LW large window mode and SW2
small window mode. These cameras and their settings are de-
scribed in detail in Ehle et al. (2004). For some fields additional



J. P. Dietrich et al.: ESO imaging survey: optical follow-up of 12 selected XMM-Newton fields 839

Table 2. Information about X-ray imaging used to create composite X-ray images.

Field Obs. ID Texp (s) Camera settings

XMM-01 0111150201 62 067 EPN LW MOS1 FF MOS2 SW2
0111150101 61 467 EPN LW MOS1 FF MOS2 SW2

XMM-02 0164560501 50 059 EPN FF MOS1 FF MOS2 FF
0156960201 30 243 EPN FF MOS1 FF MOS2 FF
0156960401 32 039 EPN FF MOS1 FF MOS2 FF

XMM-03 0112630101 36 428 EPN FF MOS1 FF MOS2 FF

XMM-04 0094800101 41 021 EPN FF MOS1 FF MOS2 FF

XMM-05 0125320701 45 951 EPN FF MOS1 FF MOS2 FF
0125320401 33 728 EPN FF MOS1 FF MOS2 FF
0125320501 7845 EPN FF MOS1 FF MOS2 FF
0153950101 5156 EPN FF MOS1 FF MOS2 FF
0133120301 12 022 EPN FF MOS1 FF MOS2 FF
0133120401 13 707 EPN FF MOS1 FF MOS2 FF

XMM-06 0111160201 49 616 EPN EFF MOS1 FF MOS2 FF

XMM-07 0106660501 11 568 EPN FF MOS1 FF MOS2 FF
0106660401 35 114 – MOS1 FF MOS2 FF
0106660101 60 508 EPN FF MOS1 FF MOS2 FF
0106660201 53 769 EPN FF MOS1 FF MOS2 FF
0106660601 110 168 EPN FF MOS1 FF MOS2 FF

XMM-08 0110980201 58 237 EPN EFF MOS1 FF MOS2 FF

XMM-09 0060370201 41 273 EPN FF MOS1 FF MOS2 FF

XMM-10 0012440301 35 366 EPN FF MOS1 FF MOS2 FF

XMM-11 0112970601 27 871 EPN FF – –
0112971601 28 292 – MOS1 FF MOS2 FF
0112972101 26 870 EPN FF MOS1 FF MOS2 FF
0111350301 17 252 EPN FF MOS1 FF MOS2 FF
0111350101 52 823 EPN FF MOS1 FF MOS2 FF

XMM-12 0109110101 76 625 EPN EFF MOS1 FF MOS2 FF

observations were available but these were discarded mainly
due to unsuitable camera settings.

The XMM-Newton data, both in raw and pipeline re-
duced form, are available through the XMM-Newton Science
Archive2. These data were used to create a wide range of prod-
ucts which include:

– combined EPIC images in the XID-band 0.5–4.5 keV
(FITS);

– combined EPIC images in the total band 0.1–12 keV
(FITS);

– color images using three sub-bands, 0.5–1.0 keV (red),
1.0–2.0 keV (green), 2.0–4.5 keV (blue), in the XID-band
(JPG).

As an illustration, Fig. 1 shows color composites of the fi-
nal combined X-ray images for the 12 fields considered. Note
that the X-ray images have a non-uniform exposure time over
the field of view due to (1) the arrangements of the CCDs
in the focal plane, which is different for the three cameras;
and (2) the vignetting of the camera optics.

2 http://xmm.vilspa.esa.es/external/xmm_data_acc/
xsa/index.shtml

3. Optical observations

As mentioned earlier, the optical observations were carried out
using WFI at the ESO/MPG-2.2 m telescope in service mode.
WFI is a focal reducer-type mosaic camera mounted at the
Cassegrain focus of the telescope. The mosaic consists of 4 ×
2 CCD chips with 2048 × 4096 pixels with a projected pixel
size of 0.′′238, giving a FOV of 8.′12× 16.′25 for each individual
chip. The chips are separated by gaps of 23.′′8 and 14.′′3 along
the right ascension and declination direction, respectively. The
full FOV of WFI is thus 34′ × 33′ with a filling factor of 95.9%.

The WFI data described in this paper are from the following
two sources:

1. the ESO Large Programme 170.A-0789(A) (Principal In-
vestigator: J. Krautter, as chair of the SWG) which has ac-
cumulated data from January 27, 2003 to March 24, 2004
at the time of writing;

2. the contributing programs 70.A-0529(A); 71.A-0110(A);
71.A-0110(B) with P. Schneider as the Principal Invest-
igator, which have contributed data from October 14, 2002
to September 29, 2003.

Observations were performed in the B-, V-, R-, and
I-passbands. These were split into OBs consisting of a
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Table 3. Planned observing strategy for the XMM-Newton follow-up
survey.

Passband Filter Ttot (s) NOB Texp (s)

B B/123_ESO879 1800 1 360

V V/89_ESO843 4400 2 440

R Rc/162_ESO844 3500 1 700

I I/203_ESO879 9000 3 300

sequence of five (ten in the I-band) dithered sub-exposures with
the typical exposure time given in Table 3. The table gives: in
Col. 1 the passband; in Col. 2 the filter id adopting the unique
naming convention of the La Silla Science Operations Team; in
Col. 3 the total exposure time in seconds; in Col. 4 the number
of observing blocks (OBs) per field; and in Col. 5 the integra-
tion time of the individual sub-exposures in the OB. The dither
pattern with a radius of 80′′ was optimized for the best filling
of the gaps. Filter curves can be found in Arnouts et al. (2001)
and on the web page of the La Silla Science Operations Team 3.

Even though the nominal total survey exposure time for
the R-band is 3500 s, the data contributed by the Bonn group
provided additional exposures totaling 11 500 s each, spread
over 4 OBs. For the same reason the B-band data for the
field XMM-07 has a significantly larger exposure time than that
given in Table 3 (see Table 9).

Service mode observing provides the option for constraints
on e.g., seeing, transparency, and airmass to be specified in or-
der to meet the requirements of the survey. The adopted con-
straints were: (1) dark sky with a fractional lunar illumination
of less than 0.4; (2) clear sky with no cirrus though not neces-
sarily photometric; and (3) seeing ≤1.′′2. The R-band images of
the contributing program were taken with a seeing constraint
of <∼1.′′0 so that the data can be used for weak lensing studies.

The total integration time in some fields may be higher than
the nominal one listed in Table 3 because unexpected variations
in ambient conditions during the execution of an OB can cause,
for instance, the seeing and transparency to exceed the origi-
nally imposed constraints. If this happens, the OB is normally
executed again at a later time. In these cases the decision of us-
ing or not all the available data must be taken during the data
reduction process. In the case of the present survey all avail-
able data were included in the reduction, which explains why
in some cases the total integration time exceeds that originally
planned.

This paper describes data accumulated prior to October 16,
2003, amounting to about 80 h on-target integration. The
science data comprises 720 exposures split into 130 OBs.
About 15% of the B-band and 85% of the R-band data are from
the contributing programs.

4. Data reduction
The accumulated optical exposures were reduced and cali-
brated using the EIS Data Reduction System (da Costa et al.,
in preparation) and its associated image processing engine

3 http://www.ls.eso.org/lasilla/sciops/2p2/E2p2M/
WFI/filters/

based on the C++ EIS/MVM library routines (Vandame 2004;
Vandame et al., in preparation)4. This library incorporates rou-
tines from the multi-resolution visual model package (MVM)
described in Bijaoui & Rué (1995) and Rué & Bijaoui (1997). It
was developed by the EIS project to enable handling and reduc-
ing, using a single environment, the different observing strate-
gies and the variety of single/multi-chip, optical/infrared cam-
eras used by the different surveys carried out by the EIS team.
The platform independent EIS/MVM image processing en-
gine is publicly available and can be retrieved from the EIS
web-pages5.

The system automatically recognizes calibration and sci-
ence exposures and treats them accordingly. For the reduction,
frames are associated and grouped into Reduction Blocks (RBs)
based on the frame type, spatial separation and time interval
between consecutive frames. The end point of the reduction
of an RB is a reduced image and an associated weight map
describing the local variations of noise and exposure time in
the reduced image. The data reduction algorithms are fully de-
scribed in Vandame (2004).

In order to produce a reduced image, the individual expo-
sures within an RB are: (1) normalized to 1 s integration; (2) as-
trometrically calibrated with the Guide Star Catalog version 2.2
(GSC-2.2) as reference catalog, using a second-order polyno-
mial distortion model; (3) warped into a user-defined refer-
ence grid (pixel, projection and orientation), using a third-order
Lanczos kernel; and (4) co-added only using the weight for dis-
carding the flux contribution from masked pixels (e.g. satellite
tracks automatically detected and masked using a Hough trans-
formation), for which the pixel value is zero. Note that individ-
ual exposures in the RB are not scaled to the same flux level.
This assumes that the time interval corresponding to an RB is
small enough to neglect significant changes in airmass.

The 720 raw exposures were converted into 160 fully
calibrated reduced images, of which 146 were released in
the B- (36), V- (32), R- (43) and I- (35) passbands. Of the
remaining 14, 10 were observed with wrong coordinates,
three (XMM-05 (R), XMM-06 (I), XMM-12 (V)) were rejected
after visual inspection and one (XMM-12) was discarded due
to a very short integration time (73 s), associated to a failed OB.
The number of reduced images (150) exceeds that of OBs (130)
because the RBs were built by splitting the OBs in order to
improve the cosmetic quality of the final stacked images, as
discussed below.

The photometric calibration of the reduced images was ob-
tained using the photometric pipeline integrated to the EIS data
reduction system as described in more detail in Appendix B. In
particular, the XMM-Newton survey data presented here were
obtained in 41 different nights of which 37 included observa-
tions of standard star fields. For these 37 nights it was attempted
to obtain photometric solutions. The four nights without stan-
dard star observations are: February 2, 3 and 4, 2003 (Public
Survey); and November 8, 2002 (contributing program). For

4 The Ph.D. Thesis is available from
http://www.eso.org/science/eis/publications.html

5 http://www.eso.org/science/eis/
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Table 4. Summary of the number of nights with standard star obser-
vations and type of solution.

Passband default 1-par 2-par 3-par total

B 0 3 4 3 10

V 0 8 3 5 16

R 0 8 3 3 14

I 4 8 2 5 19

Table 5. Comparison between the EIS 3-parameter fit solutions and
the Telescope Team’s best solution.

Passband ∆ZP ∆k ∆ color

B 0.00 −0.03 −0.06

V −0.05 0.00 −0.01

R 0.00 0.10 0.00

I −0.04 0.05 −0.02

the nights with standard star observations, the number of mea-
surements ranges from a few to over 300, covering from 1 to
3 Landolt fields.

Table 4 summarizes the available photometric observations.
The table lists: in Col. 1 the passband; in Cols. 2–5 the number
of nights assigned a default solution or a 1–3-parameter solu-
tion; and in Col. 6 the total number of nights with standard star
observations. For three nights (March 26, 2003; April 2, 2003;
August 6, 2003) the solutions obtained in the passbands V, I,
R, respectively (either 2- or 3-parameter fits) deviate from the
median by −0.26, −0.5, −0.25 mag. Of those, only the I-band
zeropoint obtained for April 2, 2003 deviates by more than 3σ
from the solutions obtained for other nights. Note that the type
of solution obtained depends on the available airmass and color
coverage, which in the case of the XMM-Newton survey de-
pends on the calibration plan adopted by the La Silla Science
Operations Team.

Because the EIS Survey System automatically carries out
the photometric calibrations it is interesting to compare the so-
lutions to those obtained by other means. Therefore, the auto-
matically computed 3-parameter solutions of the EIS Survey
System are compared with the best solution recently obtained
by the La Silla Science Operations Team. The results of this
comparison are presented in Table 5 which lists: in Col. 1 the
passband; in Cols. 2–4 the mean offsets in zeropoint (ZP), ex-
tinction (k) and color term (color), respectively. The agreement
of the solutions is excellent for all passbands. However, it is
worth emphasizing that the periods of observations of standard
stars available to the two teams do not coincide.

Not surprisingly, larger offsets are found when 2- and
1-parameter fits are included, depending on the passband and
estimator used to derive the estimates for extinction and color
term. Finally, taking into consideration only 3-parameter fit so-
lutions and after rejecting 3σ outliers one finds that the scatter
of the zeropoints is <∼0.08 mag. This number is still uncertain
given the small number of 3-parameter fits currently available,
especially in the R-band. The obtained scatter is a reasonable

estimate for the current accuracy of the absolute photometric
calibration of the XMM-Newton survey data.

There are two more points that should be considered in
evaluating the accuracy of the photometric calibration of the
present data. First, for detectors consisting of a mosaic of in-
dividual CCDs it is important to estimate and correct for pos-
sible chip-to-chip variations of the gain. For the present data
these variations were estimated by comparing the median back-
ground values of sub-regions bordering adjacent CCDs. The
determined variations were used to bring the gain to a com-
mon value for all CCDs in the mosaic. This was applied to
both science and standard exposures. Second, it is also known
that large-scale variations due to non-uniform illumination over
the field of view of a wide-field camera exist. The signifi-
cance of this effect is passband-dependent and becomes more
pronounced with increasing distance from the optical axis
(Manfroid & Selman 2001; Koch et al. 2004; Vandame et al.,
in preparation). Automated software to correct for this effect
has been developed but due to time constraints it has not yet
been applied to these data.

The final step of the data reduction process involves the
assessment of the quality of the reduced images. Following vi-
sual inspection, each reduced image is graded, with the grades
ranging from A (best) to D (worst). This grade refers only
to the visual aspect of the data (e.g. background, cosmetics).
Out of 150 reduced images covering (see Sect. 3) the selected
XMM-Newton fields, 104 were graded A, 35 B, 7 C and 4 D.
The images with grades C and D are listed in Table 6. The ta-
ble, ordered by field and date, lists: in Col. 1 the field name;
in Col. 2 the passband; in Col. 3 the civil date when the night
started (YYYY-MM-DD); in Col. 4 the grade given by the vi-
sual inspection; and in Col. 5 the primary motive for the grade.
It is important to emphasize that the reduced images must be
graded, as grades are used in the preparation of the final image
stacks. In particular, reduced images with grade D have no sci-
entific value and were not released and were discarded in the
stacking process discussed in the next section.

The success rate of the automatic reduction process is better
than 95% and most of the lower grades are associated with ob-
servational problems rather than inadequate performance of the
software operating in an un-supervised mode. An interesting
point is that occasionally R-band images are also affected by
fringing (see Table 6) – for instance, in the nights of August 6
and September 23 and 29, 2003, all from the contributing pro-
gram. The night of August 6 is one of the nights for which
the computed R-band zeropoint deviates from the median. This
points out the need to consider applying fringing correction
also in the R-band, at least in some cases. The R-band fring-
ing problem accounts for five out of seven grade C images.
The remaining cases are due to stray-light and strong shape
distortions.

It should also be pointed out that the reduced images show
a number of cosmic ray hits. This is because the construc-
tion of RBs was optimized for removing cosmic ray features
in the final stacks using a thresholding technique. To this end
the number of images in an RB was minimized for some field
and filter combinations to have at least three reduced images
entering the SB.
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Table 6. Grades representing the visual assessment of the reduced images.

Field Passband Date Grade Comment

XMM-05 R 2002-10-14 D strong stray light contamination

XMM-06 I 2003-01-29 D inadequate fringing correction

XMM-12 I 2003-03-29 D very short integration time

XMM-12 V 2003-09-27 D out-of-focus

XMM-01 V 2003-02-01 C strong shape distortions

XMM-07 R 2003-08-06 C stray light contamination

XMM-10 R 2003-08-06 C fringing

XMM-10 R 2003-09-23 C fringing

XMM-10 R 2003-09-29 C fringing

XMM-10 R 2003-09-29 C fringing

XMM-10 R 2003-09-29 C fringing

5. Final products

5.1. Images

The 146 reduced images with grades better than D were con-
verted into 44 stacked (co-added) images using the EIS Data
Reduction System. The system creates both a final stack, by
co-adding different reduced images taken of the same field with
the same filter (see Appendix C), and an associated product log
with additional information about the stacking process and the
final image. Note that all stacks (and catalogs) and their asso-
ciated product logs are publicly available from the EIS survey
release and ESO Science Archive Facility pages6.

The final stacks are illustrated in Fig. 2 which shows
cutouts from color composite images of the 12 fields. From this
figure, one can easily see the broad variety of fields observed
by this survey – dense stellar fields (XMM-01, XMM-02,
XMM-12), sometimes with diffuse emission (XMM-11), ex-
tended objects (e.g. XMM-08), and empty fields at high galac-
tic latitude (e.g. XMM-07). While the constraints imposed by
the system normally lead to good results, visual inspection of
the images after stacking revealed that at least in one case the
final stacked image was significantly degraded by the inclu-
sion of a reduced image (graded B) with high-amplitude noise.
Therefore, this image was not included in the production of
the corresponding stack. The reason for this problem is being
investigated and may lead to the definition of additional con-
straints for the automatic rejection algorithm being currently
used.

Before being released the stacks were again examined by
eye and graded. Out of 44 stacks, 33 were graded A, 10 B, and
1 C, with no grade D being assigned. In addition to the grade
a comment may be associated and a list of all images with some
comment can be found in the README file associated to this
release in the EIS web-pages. The comments refer mostly to
images with poor background subtraction either due to very
bright stars (XMM-12) or extended, bright galaxies (XMM-08,
XMM-09) in the field. It is important to emphasize that the

6 http://www.eso.org/science/eis/surveys/release_
XMM.html for catalogs and http://archive.eso.org/archive/
public_datasets.html for the latest release of stacked images
made in July 2005.

reduction mode for these data was optimized for extragalac-
tic, non-crowded fields, which is not optimal for some of these
fields. Residual fringing is also observed in some stacks such
as that of XMM-10 in the R-band and XMM-04, XMM-06 in
the I-band.

As mentioned in the previous section, to improve the rejec-
tion of cosmic rays, the RBs were constructed so that in most
cases the stack blocks (SB) consist of at least 3 reduced im-
ages as input. This allows for the use of a thresholding pro-
cedure, with the threshold set to 2.5σ, to remove cosmic ray
hits from the final stacked image. Even with this thresholding
the stacks consisting of only three RBs (totaling 5 exposures),
mostly B-band images, still show some cosmic ray hits. This
happens primarily in the regions of the inter-chip gaps, where
fewer images contribute to the final stack. Also, the automatic
satellite track masking algorithm has proven to be efficient in
removing both bright and faint tracks. The most extreme case is
3 satellite tracks of varying intensity in a single exposure. The
regions affected by satellite tracks in the original images were
flagged in the weight-map images and thus are properly re-
moved from the stacked image. Naturally, in the regions where
a satellite track was found in one of the contributing images
the noise is slightly higher in the stacked image. This is also
reflected in the final weight-map image.

The accuracy of the final photometric calibration of course
depends on the accuracy of the photometric calibration of the
reduced images which are used to produce the final co-added
stacks and the number of independent photometric nights in
which these were observed (see Table 7). The former depends
not only on the quality of the night but also on the adopted
calibration plan. To preview the quality of the photometric cal-
ibration, Table 7 provides information on the number of re-
duced images and number of independent nights for each pass-
band and filter. The table gives for each field in: Col. 1 the
field identification; Cols. 2–4 for each passband the number
of reduced images with the number in parenthesis being the
number of independent nights in which they were observed.
Complementing this information Table 8 shows the best type
of solution available for each field/filter combination. The ta-
ble gives: in Col. 1 the field name; in Cols. 2–5 the number
of free parameters in the type of the best solution available for
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Fig. 2. Above are cut-outs from color images of XMM-01 to XMM-12 (from top left to bottom right) to illustrate the wide variety of fields
the pipeline can successfully handle. The color images are BVR composite were R-band data is available, BVI otherwise. The side length of
the images displayed here is 7.′9 × 5.′6. In these images North is up and East is to the left. These composite color images also demonstrate the
accuracy of the astrometric calibration independently achieved in each passband.

the passbands indicated. Solutions with more free parameters
in general indicate better airmass and color coverage, yielding
better photometric calibration. Examination of these two tables
provide some insight into the quality of the photometric cali-
bration of each final stack, as reported below.

The main properties of the stacks produced for each field
and filter are summarized in Table 9. The table gives: in Col. 1
the field identifier; in Col. 2 the passband; in Col. 3 the total
integration time T int in seconds, of the final stack; in Col. 4 the
number of contributing reduced images or RBs; in Col. 5 the
total number of science frames contributing to the final stack;
in Cols. 6 and 7 the seeing in arcseconds and the point-spread
function (PSF) anisotropy measured in the final stack; in Col. 8
the limiting magnitude, mlim, estimated for the final image stack
for a 2′′ aperture, 5σ detection limit in the AB system; in Col. 9

the grade assigned to the final image during visual inspection
(ranging from A to D); in Col. 10 the fraction (in percentage)
of observing time relative to that originally planned.

This table shows that for most stacks the desired limit-
ing magnitude was met in V (24.92 mag) or even slightly ex-
ceeded in B (25.20 mag). The R- and I-band images are slightly
shallower than originally proposed with median limiting mag-
nitudes of 24.66 mag and 24.39 mag. Still, when only the
high-galactic latitude fields are included the median limiting
magnitudes are fainter – 25.33 (B), 25.05 (V), 25.36 (R) and
24.58 (I) mag. All magnitudes are given in the AB system. The
median seeing of all stacked images is 0.′′94 with the best and
worst values being 0.′′60 and 1.′′51, respectively. This is signif-
icantly better than the seeing requirement of 1.′′2 specified for
this survey.
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Table 7. Summary of available data – number of reduced images
and in parentheses number of independent nights – for each field
and passband.

Field B V R I

XMM-01 3 (1) 3 (2) 3 (1) 3 (3)

XMM-02 3 (1) 3 (1) 3 (1) 3 (1)

XMM-03 3 (1) 3 (2) 5 (3) 3 (1)

XMM-04 3 (1) 3 (2) 4 (2) 3 (2)

XMM-05 3 (1) 3 (2) 5 (1) 3 (2)

XMM-06 3 (1) 3 (2) 6 (4) 3 (2)

XMM-07 3 (2) 3 (2) 6 (4) 3 (2)

XMM-08 3 (1) 3 (1) – 3 (2)

XMM-09 3 (1) 3 (2) – 3 (2)

XMM-10 3 (1) – 5 (3) –

XMM-11 3 (1) 3 (2) 3 (1) 5 (4)

XMM-12 3 (1) 2 (1) 3 (1) 3 (2)

Table 8. Type of best photometric solution available for each field.

Field Default 1-par 2-par 3-par

XMM-01 R BV – I

XMM-02 RI BV – –

XMM-03 – I R BV

XMM-04 – V – BRI

XMM-05 – R I BV

XMM-06 – V BR I

XMM-07 – I B VR

XMM-08 – V – BI

XMM-09 – – B VI

XMM-10 – – B R

XMM-11 – – – BVRI

XMM-12 – BR V I

Finally, the following remarks can be made concerning the
image stacks and their calibration:

– XMM-01 (R) – The background subtraction near bright
stars is poor. This field was observed as a single OB on
February 3, 2003 for which no standard stars were ob-
served. Since this is a galactic field there are no comple-
mentary observations from the contributing program, and
therefore these observations cannot be calibrated.

– XMM-01 (I) – This field at low galactic latitude is very
crowded and no acceptable fringing map could be produced
from the science exposures in the field. The de-fringing was
done with an external fringing map generated from science
images taken on empty fields close in time to the XMM-01
I-band observations.

– XMM-02 (R) – The observations for this pointing and filter
were done with one OB (5 exposures) on February 2, 2003
for which no standard stars observations were carried out.

– XMM-02 (I) – The observations for this pointing and
filter were done with two OBs (10 exposures each) on
February 2, 2003 for which no standard stars observations

were carried out. Like for XMM-01 (I) an external fringing
map was used.

– XMM-03 (V) – The V-band calibration on the night of
March 26, 2003 yields a 3-parameter fit that deviates from
the median of the solutions by roughly 0.26 mag (less
than 3σ).

– XMM-04 (I) – Low level fringing is still visible in the final
stacked image.

– XMM-06 (I) – As in XMM-04, low level fringing is still
visible in the final stack.

– XMM-07 (B) – From the three reduced images available
only two were used for stacking because of the high ampli-
tude of noise in one of them which greatly affected the final
product.

– XMM-07 (R) – This field was observed in four nights
(August 6, and September 23, 27, and 28, 2003) as part
of the contributing program. For the night of August 6
a 3-parameter fit solution was obtained. However, this so-
lution deviates by roughly 0.25 mag relative to the median
of all R-band solutions.

– XMM-07 (I) – There is a visible stray light reflection at the
lower right corner of the image.

– XMM-08 (V) – The bright central galaxy is larger than
the dithering pattern, thus making it difficult to estimate
the background in its neighborhood. As a consequence the
background subtraction procedure does not work properly.

– XMM-08 (I) – The comments about the background sub-
traction for the V-band image also apply to the I-band.
This field was observed using 3 OBs (which in this case
also correspond to 3 RBs) on two nights (March 30, 2003,
one OB and April 2, 2003, two OBs). On the night of
April 2 a 3-parameter solution was obtained for which the
ZP determined deviates significantly (more than 3σ) from
the median of all solutions, even though the conditions of
the night seem to have been adequate. The reason for this
poor solution is at present unknown. Poor fringing correc-
tion is a possibility but needs to be confirmed. The zero-
point for the two reduced images taken in this night has
been replaced by a default value.

– XMM-09 (BVI) – The preceding comment about back-
ground subtraction (see XMM-08) can be repeated here for
the large galaxy in the North-West corner of the image. The
background subtraction procedure fails, creating a strong
variation around the galaxy.

– XMM-10 (B) – This stack has a shorter exposure time than
the others released, leading to higher background noise.

– XMM-10 (R) – This field was observed in the nights of
August 6, and September 23 and 29, 2003 as part of con-
tributing program. As in case of XMM-07 the solution for
August 6 deviates somewhat from the median.

– XMM-11 (V) – The same comments as for the photometric
calibration of XMM-03 (V) apply to this image.

– XMM-11 (I) – Like for XMM-01 (I) an external fringing
map was used.

– XMM-12 (BR) – The background subtraction near bright
stars is poor.

– XMM-12 (V) – The preceding comment about background
subtraction also applies to this image. In addition the



J. P. Dietrich et al.: ESO imaging survey: optical follow-up of 12 selected XMM-Newton fields 845

Table 9. Overview of the properties of the produced image stacks.

Field Passband Tint #RBs #Exp. Seeing PSF rms mlim Grade Completeness
(s) (arcsec) (mag) (%)

XMM-01 B 1800 3 5 1.19 0.056 24.94 A 100
XMM-01 V 6599 3 15 0.97 0.056 25.32 A 150
XMM-01 R 3500 3 5 0.82 0.074 23.97 B 100
XMM-01 I 8998 3 30 0.69 0.063 23.53 A 100
XMM-02 B 1800 3 5 1.17 0.051 24.51 A 100
XMM-02 V 4399 3 10 0.96 0.076 24.63 A 100
XMM-02 R 3500 3 5 0.64 0.087 24.69 A 100
XMM-02 I 5998 3 20 0.94 0.079 23.84 A 67
XMM-03 B 1800 3 5 1.01 0.031 25.44 A 100
XMM-03 V 4399 3 10 0.86 0.068 25.35 A 100
XMM-03 R 11 748 5 20 0.83 0.152 25.15 A 336
XMM-03 I 9297 3 31 0.96 0.061 24.39 A 103
XMM-04 B 1800 3 5 1.17 0.041 25.22 A 100
XMM-04 V 4399 3 10 1.07 0.050 25.05 A 100
XMM-04 R 11 748 4 20 0.76 0.069 25.57 A 336
XMM-04 I 8998 3 30 0.87 0.066 24.83 A 100
XMM-05 B 1800 3 5 1.24 0.076 25.18 A 100
XMM-05 V 4399 3 10 1.51 0.063 24.80 A 100
XMM-05 R 12 348 5 21 0.94 0.072 25.58 A 353
XMM-05 I 8998 3 30 1.09 0.056 24.58 A 100
XMM-06 B 1800 3 5 0.87 0.052 25.57 A 100
XMM-06 V 4399 3 10 0.73 0.039 25.43 A 100
XMM-06 R 14 998 6 25 0.85 0.060 24.54 A 429
XMM-06 I 8998 3 30 0.74 0.044 24.40 A 100
XMM-07 B 2699 2 8 1.24 0.035 25.55 A 150
XMM-07 V 4399 3 10 1.10 0.050 25.37 A 100
XMM-07 R 15 698 6 27 1.03 0.058 25.66 A 449
XMM-07 I 8998 3 30 0.95 0.048 24.96 A 100
XMM-08 B 1800 3 5 1.28 0.062 25.62 A 100
XMM-08 V 4399 3 10 1.03 0.082 24.93 A 100
XMM-08 I 8998 3 30 0.79 0.052 24.76 B 100
XMM-09 B 1800 3 5 0.94 0.045 24.59 B 100
XMM-09 V 4839 3 11 0.83 0.031 24.20 B 110
XMM-09 I 8998 3 30 0.72 0.038 23.81 B 100
XMM-10 B 1500 3 5 1.12 0.042 24.26 B 83
XMM-10 R 11 748 5 20 0.88 0.049 24.62 C 336
XMM-11 B 1800 3 5 1.09 0.058 25.25 A 100
XMM-11 V 4399 3 10 0.77 0.075 24.03 A 100
XMM-11 R 3500 3 5 0.60 0.090 23.10 A 100
XMM-11 I 12 297 5 41 0.77 0.087 22.64 A 137
XMM-12 B 1800 3 5 1.09 0.087 23.41 B 100
XMM-12 V 3519 2 8 0.79 0.085 23.48 B 80
XMM-12 R 4899 3 7 0.64 0.111 23.16 B 140
XMM-12 I 3599 3 12 1.21 0.093 22.01 B 40

comment about the photometric calibration of XMM-03
(V-band) also applies to this image.

– XMM-12 (I) – The comment about background subtraction
also applies to the I-band image. Like for XMM-01 (I) an
external fringing map was used.

Some improvements in the image quality may be possible in
the future by adopting a different observing strategy such as
larger dithering patterns to deal with more extended objects or
shorter exposure times to minimize the impact of fringing.

5.2. Catalogs

For the 8 fields located at high-galactic latitudes with |b| > 30◦,
a total of 28 catalogs were produced (not all fields were ob-
served in all filters, see Table 7). Catalogs for the remaining
low-galactic latitude fields were not produced since these are
crowded stellar fields for which SExtractor alone is not well
suited. As in the case of the Pre-FLAMES survey (Zaggia et al.,
in preparation), it is preferable to use a PSF fitting algorithm
such as DAOPHOT (Stetson 1987). Details about the catalog
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production pipeline available in the EIS data reduction system
are presented in Appendix D.

As mentioned earlier, the fields considered here cover
a range of galactic latitudes of varying density of objects, in
some cases with bright point and extended sources in the field.
In this sense this survey is a useful benchmark to evaluate the
performance of the procedures adopted for the un-supervised
extraction of sources and the production of science-grade cat-
alogs. This also required carrying out tests to fine-tune the
choice of input parameters to provide the best possible compro-
mise. Still, it should be emphasized that the catalogs produced
are in some sense general-purpose catalogs. Specific science
goals may require other choices of software (e.g. DAOPHOT,
IMCAT) and/or input parameters.

A key issue in the creation of catalogs is to minimize the
number of spurious detections and in general, the adopted ex-
traction parameters work well. However, there are unavoid-
able situations where this is not the case. Among these are:
(1) the presence of ghost images near bright stars. Their loca-
tion and size vary with position and magnitude making it dif-
ficult to deal with them in an automatic way; (2) the presence
of bright galaxies because the algorithm for automatic mask-
ing does not work well in this case; (3) residual fringing in the
image; (4) the presence of stray light, in particular, associated
with bright objects just outside the observed field; (5) when the
image is slightly rotated, the trimming procedure does not trim
the corners of the image correctly, leading to the inclusion of
regions with a low S/N. In these corners many spuriously de-
tected objects are not flagged as such. The XMM-Newton fields
are a good showcase for these various situations.

Another important issue to consider is the choice of the
parameter that controls the deblending of sources. Experience
shows that the effects of deblending depend on the type of field
being considered (e.g. empty or crowded fields, extended ob-
ject, etc.) and vary across the image. Some tests were carried
out but further analysis of this topic may be required.

A number of tests have also been carried out to find an ade-
quate compromise for the scaling factor used in the calculation
of the size of the automatic masks (see Appendix D) which de-
pends on the passband and the magnitude of the object. While
the current masking procedure generally works well, the op-
timal scaling will require further investigation. It is also clear
that for precision work, such as e.g. lensing studies, additional
masking by hand is unavoidable. It should also be mentioned
that occasionally the masking of saturated stars fails. This oc-
curs in five out of the 28 catalogs released and only for∼10% of
the saturated stars in them. These cases are likely to be of stars
just barely saturated, at the limit of the settings for automatic
masking.

Bearing these points in mind, the following comments can
be made regarding some of the released catalogs:

– XMM-03 (B) – The automatic masking misses a few satu-
rated stars.

– XMM-06 (B) – Due to a small rotation of the image of
a few degrees the trimming frame does not mask the
borders completely.

– XMM-06 (V) – The deblending near bright galaxies is
insufficient. Deblending near bright stars is too strong.

– XMM-06 (R) – As in the V-band image the deblending near
bright galaxies is insufficient.

– XMM-06 (I) – As in the V-band image the deblending near
bright galaxies is insufficient. Spurious object detections
are caused by reflection features of bright stars and stray
light reflections.

– XMM-07 (B) – Spurious objects in the corners are caused
by insufficient trimming.

– XMM-08 (B) – Masks are missing for a number of satu-
rated stars. XMM-08 contains an extended, bright galaxy
(NGC 4666) at the center of the image, plus a compan-
ion galaxy located South-East of it. The presence of these
galaxies leads to a large number of spurious object detec-
tions in their surroundings in all bands.

– XMM-08 (VRI) – See the comments about spurious object
detections for XMM-08 B-band.

– XMM-09 (B) – Cosmic rays are misidentified as real ob-
jects. The very bright galaxy located at the North-West of
the image leads to the detection of a large number of spu-
rious objects extending over a large area (10 ′ × 10′) in
all bands. Even though the galaxy has been automatically
masked, the affected area is much larger than that predicted
by the algorithm, which is optimized for stars. Thus, addi-
tional masking by hand would be required.

– XMM-09 (VI) – See the comments about spurious object
detections for XMM-09 B-band.

– XMM-10 (R) – The stacked image was graded C because
of fringing. The fringing pattern causes a high number of
spurious object detections along the fringing pattern, lead-
ing to a catalog with no scientific value. This catalog is
released exclusively as an illustration.

6. Discussion

6.1. Comparison of counts and colors

A key element in public surveys is to provide potential users
with information regarding the quality of the products released.
To this end a number of checks of the data are carried out and
several diagnostic plots summarizing the results are automati-
cally produced by the EIS Survey System. They are an integral
part of the product logs available from the survey release page.
Due to the large number of plots produced in the verification
process these are not reproduced here. Instead a small set illus-
trating the results are presented.

A relatively simple statistics that can be used to check
the catalogs and the star/galaxy separation criteria is to com-
pare the star and galaxy number counts derived from the
data to that of other authors and/or to model predictions. As
an example, Fig. 3 shows the galaxy counts in different ob-
served passbands for the field XMM-07. Here objects with
CLASS_STAR < 0.95 or fainter than the object classification
limit were used to create the sample of galaxies. Note that the
number counts shown in the figure take into account the effec-
tive area of the catalog, which is available in its FIELDS table
(see Appendix D). As can be seen, the computed counts are
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Fig. 3. Galaxy number counts for the
XMM-07 field for the different passbands
as indicated in each panel. Full circles
represent EIS data points, open triangles
Metcalfe et al. (2001), open squares Arnouts
et al. (2001).

consistent with those obtained by previous authors for all pass-
bands (Arnouts et al. 2001; Metcalfe et al. 2001).

A complementary test is to compare the stellar counts
to those predicted by models, such as the galactic model of
Girardi et al. (2005, and references therein). Generally, the
agreement of model predictions is excellent for B- and V-band
catalogs, becoming gradually worse for R- and especially in
I-band, near the classification limit, with the counts falling
below model predictions (e.g. XMM-09 I-band). Note, how-
ever, that plots of CLASS_STAR versus magnitude show a less
well defined stellar locus for these bands. It is thus reasonable
to assume that the observed differences between catalogs and
model predictions are due to misclassification of stars as galax-
ies. Alternatively, these may also reflect short-comings in the
model adopted. However, a detailed discussion of this issue is
beyond the scope of the present paper.

While useful to detect gross errors, number counts are not
sufficiently sensitive to identify more subtle differences. The
comparison of expected colors of stars with theoretical mod-
els provides a better test of the accuracy of the photometric
calibration in the different bands. Using color transformations
computed in the same way as in Girardi et al. (2002), the theo-
retical colors of stars can be obtained. Such comparisons were
made for all five fields with data in four passbands. The re-
sults for two cases, XMM-06 and XMM-07 are illustrated in
Figs. 4 and 5, respectively, which show (B − V) × (V − I) and
(V − R) × (R − I) diagrams. For XMM-06 the data are in ex-
cellent agreement with the colors of stars predicted by the the-
oretical model, with only a small (<∼0.05 mag) offset in R − I,
indicating a good calibration. On the other hand, for XMM-07,
one observes a significant offset (∼0.2 mag) in B−V. This field
was chosen because it exemplifies the worst offset observed rel-
ative to the theoretical models. Since this offset is only visible
in the (B − V) × (V − I) diagram, it suggests a problem in the
B-band data. Data for this field/filter combination comes from

two nights 2003-06-30 and 2003-08-06. Closer inspection of
the observations in the night of 2003-06-30 show that: (1) the
standard stars observations span only 2 h in the middle of the
night; (2) the photometric zeropoint derived using the available
measurements (24.59 mag) is reasonably close (∼1σ) to the
median value of the long-term trend (24.71 mag); (3) the B ex-
posures were taken close to sunrise; and (4) there was a signif-
icant increase in the amplitude of the DIMM seeing at the time
the XMM-07 exposures under consideration were taken. For
the night of 2003-08-06 standards cover a much larger time in-
terval, yielding a zeropoint of 24.82 mag with comparable dif-
ference relative to the long-term median value for this filter as
given above. The results suggest that the observed problem is
not related to the calibration of the night, as will be seen below.

6.2. Comparison with other reductions

As shown above, comparison of different statistics, based on
the sources extracted from the final image stacks, to those
of other authors and to model predictions provide an internal
means to assess the quality of the data products. However, in
the particular case of this survey one can also benefit from the
fact that about one third of the accumulated data has been in-
dependently reduced by the Bonn group in charge of the con-
tributing program (Sect. 3). The images in common are used in
this section to make a direct comparison of the astrometric and
photometric calibrations. In their reduction, the Bonn group
used their “Garching-Bonn Deep Survey” (GaBoDS) pipeline
(Erben et al. 2005).

A total of 15 stacked images in the B-, V-, and R-bands
were produced and compared to those produced by the
EIS/MVM pipeline. The astrometric calibration was done us-
ing the GSC-2.2 catalog, the same as that of the EIS reduction.
In contrast to the reductions carried out by the EIS system,
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Fig. 4. BVI (left panel) and VRI (right panel) color–color plot for stars objects in the XMM-06 field (large dots) and that obtained using
theoretical models (small dots).

0 1 2 3

0

0.5

1

1.5

0 0.5 1 1.5 2

0

0.5

1

1.5

Fig. 5. Same as Fig. 4 for XMM-07.

images were photometrically calibrated using the measure-
ments of standard stars compiled by Stetson (2000). The type
of solution (number of free parameters of a linear fit) for a night
was decided on a case by case basis after visual inspection of
the linear fits.

To carry out the comparison of the data products, catalogs
were produced from the EIS and GaBoDS images using the
same extraction parameters. These catalogs were associated
with each other to produce a merged catalog for each field and
passband. The results of this comparison for all the available
images in common are presented in Table 10. The table gives:
in Col. 1 the field name; in Col. 2 the original target name; in
Cols. 3 and 4 the mean offset and standard deviation in right as-
cension and declination in arcseconds; in Col. 5 the mean and
standard deviation of the magnitude differences as measured
within an aperture of 3′′. The mean and standard deviation
of the magnitude differences were determined in the interval

17 < m < 21. This range was chosen to avoid saturated objects
at the bright end and to limit the comparison to objects whose
estimated error in magnitude is smaller than about 0.01 mag at
the faint end. An iterative 5σ rejection, which allowed rejected
points to re-enter if they are compatible with later determina-
tions of the mean and variance, was employed to ignore obvi-
ous outliers in the computation of the mean and the standard
deviation.

Figure 6 illustrates the results obtained from the compar-
ison of the position of sources extracted from images pro-
duced by the two pipelines for the particular case of XMM-06
in R-band. From the figure one can see that the positions of
the sources agree remarkably well. In fact, as summarized in
Table 10, the typical mean deviation is ∼20 mas with a stan-
dard deviation of ∼50 mas, confirming the excellent agreement
in the external (absolute) astrometric calibration to be distin-
guished from the internal calibration discussed later.
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Table 10. Summary of the astrometric and photometric comparison. All differences were computed EIS−GaBoDS.

Field Target Passband ∆α cos(δ) ∆δ ∆m
(arcsec) (arcsec) (mag)

XMM-03 HE 1104−1805 B 0.02 ± 0.04 −0.01 ± 0.03 0.13 ± 0.02
XMM-03 HE 1104−1805 R 0.02 ± 0.05 −0.01 ± 0.05 0.01 ± 0.04
XMM-04 MS 1054.4−0321 B 0.00 ± 0.05 0.00 ± 0.05 0.12 ± 0.04
XMM-04 MS 1054.4−0321 V 0.02 ± 0.05 −0.00 ± 0.05 0.00 ± 0.04
XMM-04 MS 1054.4−0321 R 0.03 ± 0.06 0.00 ± 0.06 0.00 ± 0.03
XMM-05 BPM 16274 B 0.00 ± 0.06 −0.01 ± 0.06 0.05 ± 0.04
XMM-05 BPM 16274 R 0.03 ± 0.09 −0.01 ± 0.09 0.18 ± 0.04
XMM-06 RX J0505.3−2849 B 0.02 ± 0.04 0.00 ± 0.04 0.00 ± 0.02
XMM-06 RX J0505.3−2849 V 0.02 ± 0.04 −0.01 ± 0.04 −0.04 ± 0.04
XMM-06 RX J0505.3−2849 R 0.01 ± 0.03 0.01 ± 0.04 0.05 ± 0.03
XMM-07 LBQS 2212−1759 B 0.02 ± 0.06 −0.02 ± 0.06 0.34 ± 0.04
XMM-08 NGC 4666 B 0.00 ± 0.06 −0.01 ± 0.05 0.00 ± 0.03
XMM-08 NGC 4666 V 0.00 ± 0.06 −0.01 ± 0.05 −0.01 ± 0.03
XMM-09 QSO B1246−057 B 0.02 ± 0.06 −0.01 ± 0.05 0.02 ± 0.02
XMM-10 PB 5062 B −0.03 ± 0.05 −0.01 ± 0.07 0.05 ± 0.02

Fig. 6. Comparison of astrometry for the R-band image of XMM-06
(RX J0505.3−2849), selected to represent a typical case. The offsets
are computed EIS−GaBoDS. The dashed lines are centered on (0, 0),
while the solid lines denote the actual barycenter of the points.

Figure 7 shows a plot of the magnitude differences
measured on the GaBoDS R-band image of the field
MS 1054.4−0321 (XMM-04) versus the magnitudes measured
on the corresponding EIS image. This field shows that the pho-
tometry of both reductions agree remarkably well. The mea-
sured scatter of the magnitude differences is small (∼0.03 mag)
for this as well as for most other fields. This result indicates
that the internal procedures used by the two pipelines to esti-
mate chip-to-chip variations are consistent. Moreover, inspec-
tion of the last column of Table 10 shows that for 11 out of
15 cases the mean offsets are <∼0.05 mag. This is reassuring
for both pipelines considering all the differences involved in

16 18 20 22 24 26
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0.4

Fig. 7. Comparison of aperture magnitudes (3′′ aperture) measured
on the R-band image of the field XMM-04 (MS 1054.4−0321). The
dashed line is at a magnitude difference of 0, while the solid line de-
notes the actual offset between the EIS and the GaBoDS reduction.
The difference at the bright end is caused by different treatments of
saturated objects in both pipelines.

the process, which include differences in the routines, proce-
dures and the standard stars used. It is important to emphasize
that differences in the computed zeropoint of the photometric
solutions are <∼0.08 mag, even for the cases with the largest dif-
ferences such as XMM-05 (R) and XMM-07 (B). The value of
0.08 mag is consistent with the scatter measured from the long-
term trend shown by the zeropoints computed over a large time
interval, as presented in the EIS release of WFI photometric
solutions, thus representing the uncertainty in the photomet-
ric calibration. Therefore, the offsets reported in the table can-
not be explained by differences in the photometric calibration
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0.01

Fig. 8. Stellar PSF pattern in the R-band
images of the field MS 1054.4−0321 in
the EIS reduction (left panel) and the
GaBoDS reduction (right panel). The encir-
cled stick in the left panel denotes an ellip-
ticity of ε = 0.01. Both plots have the same
scale.

alone. This point is investigated in more detail for XMM-05
R-band and XMM-07 B-band.

All R-band images for XMM-05 were taken in one night
and the photometric solutions determined by both teams agree
very well. While the source of the discrepancy has not yet been
identified, the stellar locus in the (B−V) × (V− I) and (V−R) ×
(R − I) diagrams based on the source catalog extracted from
the EIS images yield results which are consistent with model
predictions, suggesting that the problem may lie in the Bonn
reductions. On the other hand, the large offset (0.34 mag) be-
tween the B-band observations of the field XMM-07 is most
likely caused by the data taken in the night 2003-06-30. While
the standard star observations in this night suggest relatively
good photometric conditions, the available measurements span
only about 2 h in the middle of the night, while the science ex-
posures were taken at the very end of the night. Inspection of
the ambient condition shows a rapid increase in the amplitude
of the DIMM seeing which could be related to a localized varia-
tion in the transparency. In fact, the Bonn pipeline, which mon-
itors the relative differences in magnitude for objects extracted
from different exposures in an OB, finds strong flux variations
that could be caused by changes in the sky transparency or by
the twilight at sunrise. The latter could also account for the fact
that these observations were later repeated in August of that
year. The important point is that the Bonn group discarded the
calibration of the frames taken in 2003-06-30, while the
automatic procedure adopted by EIS did not.

In addition to evaluating the accuracy of the image reg-
istration and photometric calibration, the independent reduc-
tions also offer the possibility to evaluate the shape of the im-
ages. To this end the PSF of bright, non-saturated stars on the
R-band images for XMM-04 (MS 1054.4−0321) and XMM-06
(RX J0505.3−2849) were measured and compared. These are
the only two cases in which the final stacked images were pro-
duced by using exactly the same reduced images. This is caused
by the differences in the criteria adopted in building the SBs.
In the case of XMM-06, one finds that the size and pattern
of the PSF are in good agreement and both reductions yield
a smooth PSF with no obvious effects of chip boundaries over
the whole field. The situation is different for XMM-04 as can
be seen in Fig. 8, which shows a map of the PSF distortion ob-
tained by the EIS (left panel) and Bonn (right panel) groups.
While the overall pattern of distortion is similar, the amplitude

of the PSF distortion of the EIS reduction is significantly larger
and exhibits jumps across chip borders. Although the effect is
small in absolute terms, it should be taken into account for ap-
plications relying on accurate shape measurements. The rea-
son for these differences is likely due to the fact that the as-
trometric calibration in the EIS pipeline is done for each chip
relative to an absolute external reference, without using the ad-
ditional constraint that the chips are rigidly mounted to form
a mosaic. By neglecting this constraint, the solution for each
chip in the mosaic may vary slightly depending on the dithered
exposure being considered and the density and spatial distri-
bution of the reference stars in and around the field of interest.
Since the accuracy of the GSC-2.2 of 250 mas is approximately
equal to the pixel size of WFI of 0.′′238, in addition to the abso-
lute calibration of the image centroid, finding an internal rela-
tive astrometric solution further ensures that images in different
dithered exposures map more precisely onto each other during
co-addition. Imperfections in the internal relative astrometry
result in objects not being matched exactly onto each other,
thereby degrading the PSF of the co-added image.

6.3. X-ray/optical correlation

As pointed out in the introduction, the ultimate goal of this op-
tical survey has been to provide catalogs from which one can
identify and characterize the optical properties of X-ray sources
detected with deep XMM-Newton exposures.

X-ray source lists for the high-galactic latitude fields
were produced by the AIP-node of the SSC. These are
based on pipeline processed event lists which were obtained
with the latest official version of the Software Analysis
System (SAS-V6.1). In its current version this SAS-based
pipeline does not work with stacked images.

Source detection was performed as a three-stage process
using eboxdetect in local and in map mode followed by
a multi-PSF fit with emldetect for all sources present in
the initial source lists. The multi-PSF fit invoked here works
on 15 input images, i.e. 5 per EPIC camera. The five energy
bands used per camera cover the ranges: (1) 0.1–0.5 keV;
(2) 0.5–1.0 keV; (3) 1.0–2.0 keV; (4) 2.0–4.5 keV; and
(5) 4.5–12.0 keV.

The SAS task eposcorr was applied to the X-ray source
list. Eposcorr correlates the X-ray source positions with the
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Table 11. Contents of X-ray source lists for high-latitude XMM-EIS fields.

Field Obs. ID Ns Passband Nm N1 (N1/Ns)(%) Nall N1,all B V I BV BI BVI
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

XMM-03 0112630101 69 R 92 61 88 62 47 1 1 1 0 0 0
69 36 35 51 27 27 0 0 0 0 0 0

XMM-04 0094800101 101 R 156 91 90 84 68 0 0 1 1 0 0
101 74 73 72 57 57 0 1 1 0 0 1

XMM-05 0125320401 89 R 130 79 89 52 42 1 0 2 0 0 0
89 59 57 64 37 37 1 0 2 1 0 0

XMM-06 0111160201 110 R 173 101 92 105 79 1 1 0 0 0 0
110 76 72 65 61 58 3 0 1 0 0 0

XMM-07 0106660101 144 R 191 119 83 84 66 3 0 2 1 0 2
144 82 81 56 52 52 2 2 1 1 0 1

XMM-07 0106660201 110 R 134 91 83 65 53 3 0 2 1 0 2
110 62 61 56 39 39 1 0 0 2 1 0

XMM-07 0106660601 162 R 211 139 86 93 76 1 0 1 2 0 0
162 100 98 60 59 59 1 1 1 2 0 1

XMM-08 0110980201 123 I 130 97 79 82 70 1 0 – 0 – –
123 73 73 59 58 58 0 2 – 1 – –

XMM-10 0012440301 88 R 113 76 86 50 46 1 – – – – –
88 57 56 64 35 34 3 – – – – –

positions from an optical source catalog, in this case the
EIS catalog, to correct the X-ray positions, assuming that the
true counterparts are contained in the reference catalogue.

The source detection scheme used here is very similar to
the pipeline implemented for the production of the second
XMM-Newton catalog of X-ray sources to be published by the
XMM-Newton-SSC later in 2005 (Watson et al., in prepara-
tion). This approach is superior to that used for the creation
of source lists which are currently stored in the XMM-Newton
Science Archive since it makes use of X-ray photons from all
cameras simultaneously. It also distinguishes between point-
like and extended X-ray sources. In this paper we only consider
point-like sources. Extended sources at high galactic latitudes
are almost exclusively galaxy clusters and cannot be matched
with individual objects in the optical catalogs. Examining their
properties is beyond the scope of this work.

In carrying out the matching between the XMM-Newton
source lists and those extracted from the optical images, it is
important to note that the X-ray images lie fully within the FOV
of the WFI images. Hence an optical counterpart can be poten-
tially found for any of the X-ray sources.

From the high-galactic latitudes there are 3 fields with
more than one observation. However, for XMM-05 only the
two available observations with good time t > 10 ks were con-
sidered. One of them had technical problems that prevented
it from being used for catalog extraction. For XMM-09 the
source list created contained many spurious sources due to
remaining calibration uncertainties in the pipeline processed
images and was not considered further. Figures showing the
results of the source detection process with all sources indi-
cated on an image in TIFF format, the composite X-ray im-
ages, and the source lists can be found on the web-page of the
AIP-SSC-node7. Below these source lists are used to identify
their optical counterparts.

7 http://www.aip.de/groups/xray/XMM_EIS/

The extraction yields 995 point-like X-ray sources of
which 742 are unique. The difference between these two num-
bers reflects differences in the three independent source
lists extracted from the field XMM-07. The mean flux of
the 742 unique X-ray sources is Fmean(0.5−2.0 keV) =
8.5 × 10−15 erg cm−2 s−1, the median flux in this band is
Fmed(0.5−2.0 keV) = 3.7 × 10−15 erg cm−2 s−1. Sources with
F(0.5−2.0 keV) = 4 × 10−15 erg cm−2 s−1 are detected already
with an exposure time of 5 ks, while the limiting flux in the
EIS-XMM fields at the deepest exposure levels is F lim � 3 ×
10−16 erg cm−2 s−1.

Nearly all the X-ray source lists were matched to cata-
logs extracted from the R-band images, with the exception
of field XMM-08, which was correlated with the I-band.
Two search radii, 2′′ and 5′′, were used. The larger value re-
flects the typical statistical error in X-ray source position de-
termination (typically in the range ∼0.5 ′′−2′′), coupled with
an additional systematic error component (∼1 ′′) in the attitude
of the spacecraft. Hence, a matching radius of 5 ′′ corresponds
to roughly a 2−3σ uncertainty for most of the sources. The
smaller correlation radius is justified by the distribution of the
positional accuracy of the X-ray sources, which peaks at ∼1.′′3.
It extends up to 3′′ with the majority of sources (92%) being
within 2′′.

The results of X-ray source extraction and their cross-
identification with their optical counterparts for 7 high-galactic
latitude fields (9 observations) are summarized in Table 11. For
each field two rows are given: the first row refers to the match-
ing done with a 5′′ search radius, in the second row the num-
bers for the smaller 2′′ search radius are reported. The table
lists: in Col. 1 the field name; in Col. 2 the Obs. ID of the
XMM-Newton observation; in Col. 3 the number of detected
X-ray point sources with a likelihood of existence larger than
detml = 6, Ns; in Col. 4 the passband of the catalog used as
the optical reference for matching; in Col. 5 the number of
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Fig. 9. X-ray/optical R-band positional correlation. (Top left) Number of correlated optical sources to X-ray sources within 5′′; (top right)
cumulative fraction of X-ray sources with optical counterparts in the R-band catalog. The dashed line is for the 5′′ search radius, the straight
line for the 2′′ search radius. The vertical short-dashed line denotes the approximate limit of the DSS; (bottom left) distribution of X-ray minus
optical positional offset of all and m = 1 sources; (bottom right) distribution of positional offsets in the right ascension – declination plane.

matches, Nm within 5′′ (2′′); in Col. 6 the number of X-ray
sources with at least one match N1. In the case of multiple
matches the m = 1 sources refer to the closest matching op-
tical source; in Col. 7 the identification rate N1/Ns; in Col. 8,
the number of X-ray sources, which have at least one coun-
terpart in the optical reference catalog, and are also detected
in all other available optical passbands. This is a subset of the
objects listed in Col. 5; in Col. 9, the same as in the previous
column but for the m = 1 optical counterparts, N1,all, which is
a subset of the objects listed in Col. 6; finally, in Cols. 10–15
the number of optical counterparts in other passbands, which
are not detected in the reference catalog. In Cols. 13–15 BV,
BI and BVI refer to objects which are simultaneously detected
in the respective passband but do not correspond to matches
of X-ray sources with the reference catalog. Because we only
list objects without match in the reference catalog the number
of objects reported in Cols. 10–15 is in some cases higher in
the second row than in the first row. These are X-ray sources
with matches in B-, V-, or I-band within a circle of 2 ′′ having
matches in the reference catalog only in the larger 5 ′′ search
radius.

The results of the X-ray/optical cross-correlation for all
fields with available R-band catalogs (619 unique sources) are
displayed in Fig. 9. The figure shows: (top left) the multiplicity
function; (top right) the cumulative fraction of X-ray sources
with optical counterparts in a 5′′ search radius (dashed line) and

a 2′′ search radius (straight line); (bottom left) the distribution
of the positional offsets between X-ray and optical sources; and
(bottom right) the corresponding scatter plot in the α × δ plane.
Note that in three panels all m = 1 matches are represented by
filled histograms and/or larger symbols.

Inspection of Fig. 9 shows that: (1) about 87% (61%) of the
X-ray point sources have at least one optical counterpart within
the search radius of 5′′ (2′′) down to R ∼ 25 mag, and very
few sources have more than 3 matches. In only very few cases
one finds up to five associated optical sources, i.e., potential
physical counterparts; (2) only about 15% of the X-ray sources
have counterparts down to the Digital Sky Survey magnitude
limit (R ∼ 20.5), underscoring the need for dedicated opti-
cal imaging in order to identify the X-ray source population;
(3) the distribution of the X-ray/optical positional offset peaks
at around 1′′ for the sources with m = 1. The m = 1 matches
are well concentrated within a circle of 2 ′′. The distribution is
almost flat if all associations are considered. This underlines
that the true physical counterparts to the X-ray sources will be
found predominantly among the m = 1 sources, i.e. the near-
est and in most cases single associated optical sources; (4) the
positional differences between X-ray and optical coordinates
seem to be randomly distributed.

The statement that the additional correlations found within
the greater search radius are chance alignments is strength-
ened by an estimate of the number of random matches between
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Fig. 10. Optical colors for galaxies (top panels) and stars (bottom panels) in the field XMM-06. The black squares mark X-ray sources in this
field with matches to the optical catalogs in all four passbands.

X-ray and optical sources. Using an average of 110 X-ray
sources per field we can compute the total area covered by
the search circles with 5′′ (2′′) radius. Multiplying this with
the typical number density of sources in the optical cata-
logs (30 arcmin−2) we estimate 70 (12) random matches for
an average field. The number of random matches within the
smaller correlation radius is well below the observed number
of optical/X-ray counterparts.

In addition, from this preliminary analysis the following
conclusions can be drawn: (1) about 39% of the X-ray sources
have no associated optical source within 2 ′′. This optical identi-
fication completeness is comparable with that found by Eckart
et al. (2005) in a similar study of X-ray source samples, but
there may also be small contributions from sources with larger
offsets than allowed by the adopted search radius, contamina-
tion by spurious X-ray sources, and random matches with the
optical catalogs; (2) over 50% of the m = 1 sources are de-
tected in all the other bands available, within 1 ′′; (3) corre-
lations which occur at search radii greater than 2 ′′ are most
likely random correlations with the comparably dense optical
catalogs; (4) all sources which are detected in RI are also de-
tected in BV, indicating that the optical counterparts of the
X-ray sources are not excessively red or, even if they are red,
the blue images are sufficiently deep to detect them; (5) the
small number of X-ray sources matched with objects in the
B- and V-band catalogs without matches in the R-band cat-
alog suggests that we are also not dealing with excessively

blue objects. Figure 10 shows color–color diagrams for the
field XMM-06 for stars and galaxies in the field and compares
it with the optical colors of X-ray sources matching objects
in the optical catalogs. Stars and galaxies were selected using
the SExtractor CLASS_STAR classifier with the cuts made at
CLASS_STAR < 0.1 and CLASS_STAR > 0.99 for galaxies
and stars, respectively. These diagrams show that, as one would
expect, no specific sub-population of stars or galaxies can be
identified with the X-ray sources.

7. Summary

This paper describes the data products – reduced and stacked
images as well as science-grade catalogs extracted from the
latter – produced and released for the XMM-Newton follow-
up survey performed with WFI at the ESO/MPG-2.2 m tele-
scope as part of the ESO Imaging Survey project. The sur-
vey was carried out as a collaboration between the EIS,
XMM-Newton-SSC and IAEF-Bonn groups. At the time of
writing 15 WFI fields (3.75 square degrees) have been observed
for this survey of which 12 were released in the fall of 2004,
with corrections to the weight maps in July 2005, and are de-
scribed in this paper. For the 8 fields at high galactic latitude
catalogs are also presented.

The images were reduced employing the EIS/MVM im-
age processing library and photometrically calibrated using the
EIS data reduction system. The EIS system was also used to
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produce more advanced survey products (stacks and catalogs),
to assess their quality, and to make them publicly available via
the web, together with comprehensive product logs. The quality
of the data products reported in the logs is based on the com-
parison of different statistical measures such as galaxy and star
number counts and the locus of stars in color–color diagrams
with results obtained in previous works as well as predictions
of theoretical models calibrated by independent studies. These
diagnostics are regularly produced by the system, forming an
integral part of it.

In the particular case of this survey, a number of frames
have been reduced by both EIS and the Bonn group, using in-
dependent software thus allowing a direct comparison of the
resulting images and catalogs to be made. From this compari-
son one finds that the position of the sources extracted from im-
ages produced for the same field/filter combination by the dif-
ferent pipelines are in excellent agreement with a mean offset
of ∼20 mas and a standard deviation of ∼50 mas. Comparison
of the magnitudes of the extracted sources shows that in gen-
eral the mean offset is <∼0.05 mag, consistent with the estimated
error of the photometric calibration of about 0.08 mag. Cases
with larger deviations were investigated further and the prob-
lem with the two most extreme cases were found to be unre-
lated to the calibration procedure. Instead, it demonstrates the
need for the implementation of additional procedures to cope
with the specific situation encountered and the need for a better
calibration plan. This discussion illustrates a couple of impor-
tant points. First, that while an automatic process is prone to
errors in dealing with extreme but rare situations, reductions
carried out with human intervention are prone to random er-
rors which can never be eliminated. Second, more robust pro-
cedures can always be added or existing ones tuned to deal with
exceptions once they are found. However, as always when deal-
ing with automatic reduction of large volumes of data, the real
issue is to decide on the trade-off between coping with these
rare exceptions and the speed of the process and margin of fail-
ures one is willing to accept.

Finally, a comparison of the PSF distortions suggests
that some improvement could be achieved by requiring the
EIS/MVM to impose an additional constraint on the astromet-
ric solution to improve the internal registration. As mentioned
earlier this can be achieved by imposing the geometrical con-
straint that the CCDs form a mosaic.

Preliminary catalogs were also extracted from the available
X-ray images and cross-correlated with the source lists pro-
duced from the R-band images. From this analysis one finds
that about 61% of the X-ray sources have an optical counterpart
within 2′′, most of which are unique. Out of these about 70%
are detected in all the available passbands. Combined, these
results indicate that the adopted observing strategy success-
fully yields the expected results of producing a large popula-
tion of X-ray sources (∼300) with photometric information in
four passbands, therefore enabling a tentative classification and
redshift estimation, sufficiently faint to require follow-up
observations with the VLT.

The present paper is one in the series presenting the re-
sults of a variety of optical/infrared surveys carried out by the
EIS project.
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Fig. 1. Color composite X-ray images for the 12 fields considered in this paper (XMM-01 to XMM-12 from top left to bottom right). The color
images are composites within the so-called XID-band (0.5–4.5 keV). Red, green and blue channels comprise the energy ranges 0.5–1.0 keV,
1.0–2.0 keV, and 2.0–4.5 keV, respectively. Weighting of the sub-images was done in a manner that a typical extragalactic source with a power
law spectrum with photon index 1.5 and absorption column density NH = 1 × 1020 cm−2 would have equal photon numbers in all three bands.
North is up and East to the left. The size of the images is typically 30′ × 30′ but varies slightly with camera orientation.
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Appendix A: Comments on the individual fields

Below a broad overview of the 12 fields discussed in the present
paper is given. It includes a description of their nature and
the original target of the X-ray observations. Details about
the exposure time per camera per observation are given on
the web-page.

1. XMM-01/RX J0925.7−4758 – The original target was
the ROSAT-discovered, galactic supersoft X-ray binary
RX J0925.7−4758, also known as MR Vel (Motch et al.
1994). The X-ray image is a superposition of two medium
deep (∼60 ks) observations with EPIC-PN in large window,
EPIC-MOS1 in full frame, and EPIC-MOS2 in small win-
dow mode. This results in a reasonably deep (∼115 ks) ex-
posure in the common PN and MOS area (less than half of
the field of view).

2. XMM-02/RX J0720.4−3125 – Targeting the ROSAT-
discovered isolated neutron star RX J0720.4−3125 (Haberl
et al. 1997), the X-ray image is a superposition of
three medium deep observations with all cameras in full
frame. The bright target of the observation causes visible
out-of-time (OOT) events in the X-ray images leading to
bright stripes through the target. These stripes are fixed in
detector coordinates, hence they do not coincide in sky co-
ordinates resulting in three different OOT stripes.

3. XMM-03/HE 1104−1805 – The primary target of this
XMM-Newton observation was the double-lensed quasar
HE 1104−1805 (Wisotzki et al. 1993). This is an empty
field at high galactic latitude. The X-ray image is a com-
bined image of the three EPIC cameras during the single
observation of the target. Bad space weather resulted in
a loss of ∼65% of the total exposure and a rather shallow
resulting image (∼10 ks).

4. XMM-04/MS1054.4–0321– The galaxy cluster MS 1054.4–
0321 at redshift of z = 0.83 is the most distant cluster in
the Einstein Medium Sensitive Survey and among the most
massive ones (Gioia et al. 1990; Stocke et al. 1991; Gioia
& Luppino 1994). The X-ray image is a combined image
of the three EPIC cameras of the single observation of the
target, all taken in full frame mode.

5. XMM-05/BPM 16274 – The white dwarf BPM 16274 is at
high galactic latitude. This field is used for calibrations of
the optical monitor on-board the XMM-Newton satellite.
The X-ray image is a superposition of six observations in
full frame mode of all three cameras. The archive contains
already many more data sets with other camera settings and
the observations in this field are ongoing.

6. XMM-06/RX J0505.3−2849 – This is a field at high galactic
latitude. The galaxy cluster RX J0505.3−2849 in the cen-
ter was detected as part of the SHARC survey (Burke et al.
2003) at a redshift of z = 0.509. The X-ray image is the su-
perposition of all three EPIC cameras, which were all oper-
ated in full frame mode. Only the PN suffered significantly
from high background, resulting in a medium deep X-ray
image (∼45 ks).

7. XMM-07/LBQS 2212−1759 – In order to avoid potential
damage from the Leonid meteors when XMM intersects
their trajectories annually, the spacecraft is oriented in the

anti-Leonid direction for safety reasons. The field then re-
peatedly chosen for observation was centered on the z =
2.217 quasar LBQS 2212−1759 (Barkhouse & Hall 2001).
The X-ray image is a superposition of five observations
with all cameras in full frame mode. Enhanced background
affected less than 15% of the observations resulting in
a truly deep field with more than 200 ks net exposure in
all three cameras. The nominal target of the observations
was not discovered, the image is thus dominated by the
serendipitous source content. The most prominent source
is a new cluster of galaxies close to the center of the field.

8. XMM-08/NGC 4666 – The target of this field was the al-
most edge-on spiral galaxy NGC 4666 which dominates
the center of the field. Although the target was optically
and X-ray extended, the target was included in the pub-
lic survey since the target blocks only about 5% of the
field of view. The X-ray image is a combined image of the
three EPIC cameras of the single observation of the target,
all taken in full frame mode.

9. XMM-09/QSO B1246−057 – The target was the broad ab-
sorption line quasar B1246−057. The XMM-Newton ob-
servation of the target was published by Grupe et al.
(2003). The X-ray image is a combined image of the
three EPIC cameras of the single observation of the target,
all taken in full frame mode. The field is unusual, about
one quarter of the field in the NE corner is almost devoid of
X-ray sources. The dominant point-like object is the X-ray
counterpart of the Algol binary HD 111487 (RBS 1165).

10. XMM-10/PB 5062 – PB 5062 (also known as
QSO B2202−0209) is a quasar at redshift z = 1.77
(Yuan et al. 1998). The X-ray image is a combined image
of the three EPIC cameras of the single observation of the
target, all taken in full frame mode.

11. XMM-11/Sgr A – The target of this field is the center of our
Milky Way. The X-ray image is a superposition of five ob-
servations with all cameras in full frame mode. The obser-
vations were severely affected by background flares result-
ing in a loss of more than 50% of the observation time.
Nevertheless, repeated observations of the field resulted
in a medium deep exposure with more than 40 ks expo-
sure in all three cameras. The image is dominated by dif-
fuse emission from the galactic center region. In addition
there are two classes of point-sources, heavily absorbed,
i.e. likely background sources with hard X-ray spectra and
foreground sources with soft X-ray spectra.

12. XMM-12/WR 46 – This object also known as HD 104994 is
a Wolf-Rayet star. The X-ray image is a combined image
of the three EPIC cameras of the single observation of the
target, all taken in full frame mode. Data loss due to en-
hanced background is insignificant resulting in a medium
deep field with more than 70 ks exposure in each camera.

Appendix B: Photometry

The photometric calibration is done in a fully automated way
by the EIS Data Reduction System (da Costa et al., in prepa-
ration) calibrating all data to the Vega magnitude system. The
photometric pipeline extracts catalogs from the standard star
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fields, and measures fluxes at different apertures to allow for
a growth curve inspection. The positions and flux measure-
ments for each object are cross-correlated with those corre-
sponding to known standard stars as stored in a database. The
matched standard stars are then used to determine the photo-
metric zeropoint, extinction and color term from a linear fit.
Finally, the zeropoint for each science frame is derived from
the linear fit derived for the night of observation.

In the case of optical observations, as in this paper, the cal-
ibrations have been based on observations of Landolt (1992)
standard star fields. The magnitudes were measured in 6 ′′ aper-
tures, which from monitoring the growth curve of all measured
stars proved to be adequate. The linear fits had from one to
three free parameters depending on the available airmass and
color coverage provided by the calibration plan. In cases where
the airmass and/or color coverage is insufficient, pre-specified
values for the extinction and color term, either determined from
other solutions or from theoretical models, are used.

The photometric pipeline computes photometric parame-
ters for all possible types of fits (one to three free parameters)
and chooses the solution with the smallest rms to be the best
solution for the night. A night is considered photometric if this
scatter is less than a pre-defined value, which at the present
time is taken to be 0.1 mag. If none of the solutions satisfies
this criterion and/or the solution found yields unrealistic re-
sults (e.g. negative extinction) then the night is considered non-
photometric and a default value for the zeropoint is adopted and
its error set to −1. For nights without observation of standard
star fields, a default zeropoint and an error of −2 are assigned to
the image. Finally, during quality assessment of the data, cal-
ibrated images with zeropoints that deviate significantly from
a reference value have the zeropoint in the header changed to
a default value and its error set to −3. When a default value is
assigned all images will have the same zeropoint in the header
regardless of the airmass at which they were observed. For ho-
mogeneity, the default value normally adopted is the median of
the zeropoints reported in the trend analysis kept by either the
telescope team (depending on the instrument) or the internal
EIS database. In the case of WFI, only one solution is currently
reported on the WFI WWW pages.8

The derived photometric solutions were used to calibrate
the reduced images. The zeropoint in the header of a reduced
image is given by

ZP = ZP′ − kX (B.1)

where ZP′ is the zeropoint at zero airmass (determined from
the linear fit as described above), k is the extinction coefficient
and X is the airmass at which the frame was observed. Using
this definition the Vega magnitude can computed by

mVega = −2.5 log( f ) + ZP (B.2)

where f is the flux in number of counts directly measurable on
the image (note that the reduced images are normalized to 1 s).

8 http://www.ls.eso.org/lasilla/sciops/2p2/E2p2M/
WFI/zeropoints/

Appendix C: Image stacks

Most fields are covered by more than one reduced image. These
are co-added to create the final image product. The following
steps are involved in the creation of a final stacked image:

– Grouping: reduced images are grouped into stacking
blocks (SBs) according to position (with a minimum dis-
tance between centers of 0.25 times the field-of-view), and
filter.

– Validation: as the co-addition is carried out in pixel space
it is required that all images have been warped to the same
reference grid. Therefore, images in a SB must share the
same reference grid (projection, reference position, pixel
scale and orientation). In addition, the images contribut-
ing to an SB, or their original RBs, are checked to ensure
that they appear only once in the SB. Images in the SB are
also checked to ensure that their flux scale has been prop-
erly normalized to 1 s, and if not they are re-normalized
accordingly.

– Constraints: images in an SB are checked to ensure that
they meet certain constraints, for instance on the value of
seeing, the rms of the PSF distortion and grade. In addition,
the contributing images to an SB, or their original RBs, are
checked to prevent the repetition of raw exposures. Images
not satisfying the constraints are discarded from the SB.

– PSF homogenization: all images in the SB are convolved by
a Gaussian with a FWHM corresponding to the the largest
value computed for the contributing images.

– Flux scale determination: before the images can be co-
added, which is done using a weighted mean procedure, it
is necessary to have all images at the same flux level. This
is done by scaling photometric frames to zero airmass using
the extinction coefficients from the photometric solutions.
The non-photometric frames are scaled to the zero airmass
level of the photometric frames (see below).

– Co-addition: images in a validated SB are co-added us-
ing a weighted mean. The weight images reflect the expo-
sure times of their associated science image. Therefore, the
weight of each image is a combination of exposure time
and noise. However, the weight images also contain infor-
mation about the location of bad pixels and masks which
are set to zero weight and thus do not contribute to the final
image. In the co-addition process, performed by the rou-
tine add-mosaic of the EIS/MVM library, a sigma-clipping
procedure is employed to remove cosmic ray hits.

The image co-addition uses a weighted mean combination. The
weighting is done with the weight images produced by the im-
age reduction. Additionally, a thresholding procedure is em-
ployed to remove cosmic rays. In general, the use of weight
maps and cosmic ray hits removal produces very clean final
images.

As mentioned above, all images in an SB have to be scaled
to a common flux level before the co-addition to assure the pho-
tometric calibration of the final, stacked image. For this rescal-
ing, one has to consider two cases:

1. SB with at least one photometric frame – In this case the
reference flux level is obtained from the combination of
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all contributing photometric frames. First, all photomet-
rically calibrated frames are scaled to the flux level that
would have been obtained at zero airmass. This is done
using the extinction coefficients of their respective photo-
metric solutions. Second, by computing a weighted aver-
age of all scaled images a reference image is created. For
the final co-addition all input images (photometric and non-
photometric) are scaled to the flux level of the reference
image. The scaling factors are determined by comparing
object magnitudes. Naturally, in cases where only one pho-
tometric frame is available, this one is used as the reference.

2. SB with no photometric frames – Occasionally, none of
the reduced images in an SB are photometrically calibrated
(e.g. no standards were observed in the night, observations
in non-photometric nights). In such cases, all images are
scaled to the flux level of an arbitrarily chosen reference im-
age from the SB. The zeropoint of the final stacked image is
then the zeropoint of the adopted reference image. The ze-
ropoint of the output image is that of the arbitrarily chosen
reference. These frames can be identified by the negative
zeropoint error assigned to these cases, as described above.

Appendix D: Catalog production

The final processing step in the EIS Data Reduction system
is the creation of source catalogs by standardized procedures,
resulting in catalogs containing enough information to be di-
rectly usable for scientific applications. Here the production of
catalogs for deep, sparse fields is discussed. The production of
catalogs for crowded fields, which are not included in this re-
lease, will be described in Zaggia et al. (2005, in preparation).

The EIS catalog production is based on SExtractor (Bertin
& Arnouts 1996) and a common configuration file for all cat-
alogs with a minimum number of adjustments to be made for
individual images. For each image the appropriate values for
the seeing and magnitude zeropoints as well as the weight-map
associated to each image are used. Other parameters are the
same for all catalogs.

The catalog production starts with a very low S/N catalog,
which contains a large number of spurious objects. To produce
a science-grade catalog a number of steps are taken. First, the
catalog is pruned for objects with a S/N (determined from the
MAGERR_AUTO) below a user-defined level, which was set
to 5 for this release. The object magnitudes are converted to the
AB system according to the response function of the optical
system and corrected for galactic extinction. At present, this
correction is applied to the magnitudes of all objects, including
stars. To facilitate the use of the catalogs 14 flags are added for
each object as described below.

The saturation level of the final image stack is difficult to
determine from the input images due to variations in integra-
tion time and possibly seeing. Therefore, the saturation level
is determined from the extracted catalog. The method is based
on the FWHM and peak flux of bright objects. The distribu-
tion of the FWHM is determined and sigma-clipped to exclude
bright galaxies from the sample. Among the remaining objects
those with FWHM deviating more than 3σ are taken to be the
saturated objects. The saturation level is set to the minimum

peak value among these objects. This value is used to set the
saturation flag.

To be able to remove objects close to bright stars masks
can be created in two ways: by an automatic routine or by hand
using a Skycat plug-in. The automatic masking adds masks
around saturated objects as well as around objects brighter
than a user-specified magnitude. The size of the mask scales
with the major-axis of the object, as computed by SExtractor.
The scaling factor is specified by the user. The adopted shape
of the masks is a square with one of the diagonals oriented
North-South in an attempt to mask the diffraction spikes. The
parameters used in the mask definition are reported in the prod-
uct log. The positions of all masks are reported in the MASKS
table in the catalog.

Note that except for objects with S/N less than that re-
quired, no object is removed from the catalog. If necessary,
more objects can be pruned by the user according to the flags
described below. In addition, the default magnitude system
adopted for the objects can be changed using the information
available in the FIELDS table.

The catalogs produced by the EIS Data Reduction system
are in FITS format, based on the “Leiden Data Center” (LDAC)
convention originally adopted by the DENIS project and later
expanded in the course of the EIS project. It currently consists
of a FITS header and the following tables: FIELDS, OBJECTS,
MASK, and FILTER.

The FIELDS table contains general information for all ob-
jects in the catalogs. It consists of 109 columns including:
(1) basic information set by the LDAC library; (2) keywords
taken from the FITS header of the image from which the cat-
alog was extracted; (3) the main SExtractor configuration pa-
rameters used; and (4) information computed by the EIS Data
Reduction system. The latter includes, for instance:

– the diameter of the 10 apertures used for aperture magni-
tudes, ranging from 1′′ to 5′′ in steps of 0.′′5 and a large
aperture of 10′′;

– the WCS coordinates of the corners of the original image
and of the trimmed area;

– the extinction correction. This is computed as the average
of the value of the extinction in cells of 3 ′ × 3′, distributed
over the trimmed image;

– the value added to the original magnitude of the extracted
objects in the Vega system to produce the reported magni-
tudes in the catalog in the AB system;

– an estimate of the fudge factor used to multiply the errors
reported by SExtractor to correct for the correlated noise
introduced by the re-sampling kernel;

– total and trimmed areas.

Some of the information contained in the FIELDS table is also
available in the Product Logs which are available on the EIS
XMM-Newton follow-up survey release pages.

The OBJECTS table reports the parameters characterizing
the individual extracted objects as computed by SExtractor. It
has 69 columns, some being vectors (e.g. aperture magnitudes),
describing the main geometric and photometric properties of
the objects. The parameters were chosen as a compromise be-
tween the total number of parameters and the most frequently
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requested parameters from survey product users. The choice
of apertures and the flags defined are the result of sugges-
tions made by users of EIS data products. In addition to the
SExtractor flag, which are described in the SExtractor manual,
14 other flags have been defined to facilitate the filtering of the
catalogs. These are

– FLAG_SEX1–FLAG_SEX128 – 8 flags individually repre-
senting the various SExtractor flag components;

– FLAG_SAT – set to 1 if the object is saturated;
– FLAG_TRIM – set to 1 if the object is inside a trimmed area;
– FLAG_MASK – set to 1 if the object is inside a masked area;

– EISFLAG – sum of FLAG_TRIM and FLAG_MASK
– FLAG_STATE – 1 if any of the above flags are set
– FLAG_STAR – 1 if star, 0 if galaxy, based on SExtractor’s

CLASS_STAR parameter. The value used for separation
and the magnitude down to which a classification was at-
tempted are reported in the product log.

The MASK table gives the number and coordinates of the ver-
tices of both automatically created masks as well as those
drawn by hand using a Skycat plug-in.

The FILTER table gives the filter transmission curve and
their convolution with the optical system response function.


