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3Astronomical Institute, Academy of Science, Bočńı II 1401, CZ-14131 Prague, Czech Republic
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ABSTRACT

The S-star cluster in the Galactic center allows us to study the physics close to a supermassive black hole including

distinctive dynamical tests of general relativity. Our best estimates for the mass of and the distance to Sgr A* using

the three shortest period stars (S2, S38, and S55/S0-102) and Newtonian models are MBH = 4.15± 0.13± 0.57× 106

M� and R0 = 8.19±0.11±0.34 kpc. Additionally, we aim at a new and practical method to investigate the relativistic

orbits of stars in the gravitational field near Sgr A*. We use a first-order post-Newtonian approximation to calculate

the stellar orbits with a broad range of periapse distance rp. We present a method that employs the changes of

orbital elements derived from elliptical fits to different sections of the orbit. These changes are correlated with the

relativistic parameter defined as Υ ≡ rs/rp (with rs being the Schwarzschild radius) and can be used to derive Υ from

observational data. For S2 we find a value of Υ = 0.00088 ± 0.00080 which is within the uncertainty consistent with

the expected value of Υ = 0.00065 derived from MBH and the orbit of S2. We argue that the derived quantity is

unlikely to be dominated by perturbing influences like noise on the derived stellar positions, field rotation, and black

hole mass drifts.
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1. INTRODUCTION

Monitoring the Galactic center (GC) small group of

fast-moving stars, known as the S-stars (Eckart & Gen-

zel 1997), has uncovered the existence of a ∼ 4 × 106

M� supermassive black hole (SMBH), Sagittarius A*

(Sgr A*), located in the central stellar cluster of the

Milky Way (e.g. Eckart et al. 2017; Eckart & Genzel

1996; Ghez et al. 1998). The small distances to Sgr A*

and the high velocities of some of the S-stars during

their periapse passage have triggered the investigations

for testing the predictions of general relativity (GR) in

the vicinity of the black hole (Jaroszynski 1998; Frag-

ile & Mathews 1999; Rubilar & Eckart 2001; Weinberg

et al. 2005; Zucker et al. 2006). However tests of GR

depend on an accurate knowledge of the gravitational

potential, requiring precise observations of stellar orbits,

and meticulous determination of the mass of the SMBH

(MBH) and the distance to it (R0).

The mass of Sgr A* and the distance to GC are essen-

tial quantities. They allow us to place the Milky Way

in the observed correlations between the central black

hole mass, the velocity dispersion, and the luminosity

of the bulge stars (Ferrarese 2002; Tremaine et al. 2002;

Kormendy & Ho 2013). The quantity Ro is an essential

basis for the understanding and modelling the Galactic

dynamics (e.g. Englmaier & Gerhard 1999; Portail et al.

2016). Both quantities allow us to determine the appar-

ent size of the Schwarzschild radius in the sky. If Sgr A*

has a spin, a suitable orientation, and if the luminous

accretion zone is not heavily disturbed, one can expect

to see a black hole shadow - the size of which depends

on R0 and MBH (e.g. Falcke et al. 2000; Fraga-Encinas

et al. 2016).

Stars close to Sgr A*: One of the brightest stars (near-

infrared (NIR) Ks-band (centered at 2.18 µm with a

width of 0.35 µm) magnitude = 14.2) in this cluster is S2

(also referred to as S0-2). While the first Keplerian or-

bital elements of the S2 orbit could be derived from the

pre-periapse data the situation improved significantly

after the periapse passage of S2 in 2002. Near-infrared

adaptive optics (AO) imaging allowed the derivation of

detailed Keplerian orbital elements (Schödel et al. 2002;

Ghez et al. 2003). NIR spectroscopy resulted in radial

velocities and hence, in a determination of the mass and

the distance to the GC derived from the orbital data

(R0; Ghez et al. 2003, 2005; Eisenhauer et al. 2003).

These results could be improved using other high ve-

locity S-stars in the vicinity of Sgr A* (e.g. Ghez et al.

2008; Gillessen et al. 2009b; Boehle et al. 2016; Gillessen

et al. 2017). So far the orbit of 40 of these stars at

distances between 1-100 milliparsecs (mpc) from Sgr

A* have been determined using NIR imaging and spec-

troscopy (Gillessen et al. 2017). However, it is presumed

that there are many more fainter stars in the innermost

region around Sgr A* to be discovered (Sabha et al.

2012). The star S2 has a short orbital period of about

16.2 years which has enabled us to observe it long enough

to determine its motion with high accuracy (Ghez et al.

2003; Gillessen et al. 2009b, 2017). Its velocity at pe-

riapse in units of the speed of light is ∼ 0.02 and if we

consider a semi-major axis of 0.124′′, an eccentricity of

0.88, and a BH mass of 4 × 106 M�, then the periapse

shift to the lowest order will be around 10.8′ which is

large enough to be observable (Jaroszynski 1998; Frag-

ile & Mathews 1999; Rubilar & Eckart 2001; Weinberg

et al. 2005).

The proper motion of S38 (Ks=17; also referred to as

S0-38) can also help us in determining the gravitational

potential parameters of the SMBH with high accuracy,

since a large portion of its orbit has been observed and

the rest can be covered in a short time. Another reason

that makes S38 important is although the orbit is lo-

cated in the very central region of GC, most of its orbit

is to the west of Sgr A* on the sky, which is much less

crowded and thus S38 is less prone to confusion with

other sources in the center. Moreover, the large uncer-

tainty in determining the closest approach of S2 to the

SMBH has limited us in determining the north-south

motion of the black hole while the fact that the orbit of

S38 is perpendicular to the orbit of S2 can help us in

overcoming this limit (Boehle et al. 2016). The orbit of

S38 has been used combined with the orbit of S2 to con-

strain the gravitational potential in the GC in Boehle

et al. (2016).

A further important source is S55/S0-102 (Ks=17.1;

Meyer et al. 2012) with period of just ∼12 years which

makes it the shortest period star known until now. If

stars within the orbit of S2, S38, and S55/S0-102 are

discovered, spin related effects, e.g., the Lense-Thirring

precession and the frame-dragging and therefore tests

of no-hair theorem appear to be in reach (Preto & Saha

2009; Merritt et al. 2010; Angélil et al. 2010; Zhang et al.

2015).

Post-Newtonian effects: Shortly after GR had been

formulated (Einstein 1915)1 it was recognized that three

most promising observational tests can be set up in

the weak-gravitational field regime of the Solar system,

namely, (i) the measurement of the deflection of light

passing nearby a gravitating body, (ii) the time delay of

light traversing the gravitational field, and (iii) the shift

of the pericenter of an orbit of a test body on a closed

1 For recent overviews on its centenary, see, e.g., Iorio (2015);
Debono & Smoot (2016).
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trajectory (exhibited as the anomalous perihelion shift

of Mercury).

The experimental constraints on the Mercury’s peri-

helion shift sparked confusion by the fact that the total

value of the shift combines additional influences and it

was also realized that these measurements could be im-

proved if perihelion shifts from different planets (orbit-

ing at different radius) are included.

In our present work we also adopt the pericenter shift

as a suitable and practical approach to check the char-

acter of the gravitational field near Sgr A*. Several S-

cluster stars can be employed as test particles on differ-

ent orbits around the central black hole, hence improv-

ing the precision. As a consequence of our set-up, we can

tackle the problem within the framework of the weak-

field post-Newtonian (PN) approximation. A source of

complication (similar to the historical case of Mercury)

is caused by a potential role of the mass of up to 104

solar masses (e.g. the robust early result by Mouawad

et al. 2005) distributed within the orbit of stars which

may cause a Newtonian precession of the same order of

magnitude as GR precession but in the opposite direc-

tion. Rubilar & Eckart (2001) studied this effect and

concluded that this Newtonian shift may partially or

completely compensate the GR shift for S2-like stars.

Moreover, the granularity of the distributed mass (i.e.

the number of the perturbers) may affect both the ec-

centricity and the orbital plane through the resonant re-

laxation phenomenon (Sabha et al. 2012). These pertur-

bations possibly hide the frame-dragging and the Lense-

Thirring effects for the orbits larger than ∼ 1 mpc and

∼ 0.2 mpc, respectively (Merritt et al. 2010).

Determining the proper motions and the radial veloc-

ities of the stars can lead to the detection of manifes-

tation of these perturbations in stellar redshift curves

i.e. the gravitational redshift and the special relativis-

tic transverse Doppler effect (Zucker et al. 2006; Angélil

et al. 2010; Zhang et al. 2015). This might be observ-

able during the next periapse passage of S2 in ∼ 2018.6.

Zucker et al. (2006) conclude detecting the PN effects in

the redshift curves will be possible only after a decade of

observation. Iorio & Zhang (2017) investigate the possi-

bility of using the PN corrections of the Schwarzschild-

like, Lense-Thirring, and quadruple momentum effects

to the orbital period in order to conduct new tests of GR.

Zhang & Iorio (2017) study the gravitational perturba-

tions on the apparent position on the sky plane and the

redshift of the stars and stellar remnants around the BH

in order to investigate the possibility of unbiased mea-

surements of spin-induced effects of a Kerr BH. They

also study the possible perturbations from S55/S0-102

on the orbit of S2. Hees et al. (2017) constrains a fifth

force using Keck observations of the two short period

stars in search of deviations from GR. Moreover, they

put an upper limit on a shift of the argument of pe-

riapse produced by a fifth force which is one order of

magnitude larger than the GR periapse shift. The rel-

ativistic effects are stronger and probably dominant in

the stars with smaller orbits (shorter periods) compared

to S2 which makes the detection of the GR perturbation

more promising. The discovery of such stars is highly

anticipated in the near future using instruments like the

GRAVITY on the Very Large Telescope Interferometer

(VLTI, e.g. Eisenhauer et al. 2011; Eckart et al. 2012;

Grould et al. 2017) which is currently being commis-

sioned and the European Extremely Large Telescope (E-

ELT, e.g. Brandl et al. 2016; Davies et al. 2016) which

is under develop.

In this work, we use the NIR imaging and spectroscopy

data of the three known stars closest to Sgr A* to study

the properties of the central black hole, i.e. mass and

the distance to it. We investigate the PN effects ob-

servable in the orbital motion of the S2 star with the

smallest known periapse distance as well as simulated

stars within its orbit. We start with the details of the

observations in NIR, the data reductions, and the Kep-

lerian and relativistic PN models in Sect. 2. We discuss

our astrometric accuracy and find the astrometric posi-

tions of our candidate S-stars (S2, S38, and S55/S0-102)

to derive the best orbital fits, both Keplerian and rel-

ativistic, and consequently obtain the gravitational po-

tential parameters in Sect. 3. In Sect. 4 we develop

two methods which use the deviations from a Newto-

nian symmetric orbit in two directions to measure PN

effects within the weak-field limit. Since S2 is the only

S-star with small enough periapse distance that makes

the observation of these effects promising and it is the

only star with enough available astrometric and radial

velocity data, it is necessary to start with simulating the

orbits of the stars that are located within the orbit of

S2 as our highly to mildly relativistic case studies. The

results from these simulations are analyzed by connect-

ing them to the relativistic parameter at periapse which

is beneficial in assessing the magnitude of PN effects.

The relativistic parameter at periapse is correlated with

the mass of the BH, periapse distance, relativistic peri-

apse precession, and the relativistic β. The results are

then applied to S2 in order to evaluate and confirm the

effectiveness of our methods and presented in Sect. 5.

The results from all sections are discussed in Sect. 6 and

finally a summary of the conclusions is given in Sect. 7.

2. OBSERVATIONS AND SIMULATIONS
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The stars with short orbital periods enable us to ob-

serve large enough portion of their orbits to determine

their motion with precision and thus study the proper-

ties of our Galaxy’s SMBH. Moreover, these stars with

small orbits and small closest approach to the SMBH

make them the best candidates for investigating the GR

effects. Therefore, we choose S2, S38, and S55/S0-102

as our candidate S-stars. Making use of the previously

reported astrometrical and radial velocity data of these

stars will also help us to cover more of their orbits.

First step is obtaining the astrometrical positions from

the near-infrared data to find a Newtonian model for

their motions. Additionally we need a model to describe

their relativistic motion around the SMBH for tests of

GR.

2.1. Near-infrared data

The positions of the S-stars are calculated from the

AO assisted imaging data of the GC from 2002 to 2015

taken by the NAOS-CONICA (NACO) instrument in-

stalled at the forth (from 2001 to 2013) and then the first

(from 2014 on) unit telescope of the Very Large Tele-

scope (VLT). The Ks-band (2.18 µm) images obtained

by the S13 camera (with 13 mas pix−1 scale) and the

S27 camera of NACO (with 27 mas pix−1 scale) are used.

The AO guide star is IRS7 with Ks = 6.5 – 7.0 mag lo-

cated at about 5.5′′ north of Sgr A*. The data reduction

consist of the standard steps, flat-fielding, sky subtrac-

tion, and bad-pixel correction. A cross-correlation algo-

rithm is used to align the dithered exposures. We use

the 27 mas pix−1 scale images to measure the position of

the SiO maser stars IRS9, IRS10EE, IRS12N, IRS15NE,

IRS17, IRS19NW, IRS28, and SiO-15 (Menten et al.

1997; Reid et al. 2003, 2007) which were needed for

finding the connection of the NACO NIR data and the

radio reference frame. In order to measure the posi-

tion of the S-stars, the Lucy-Richardson deconvolution

algorithm is used to resolve the sources in the 13 mas

pix−1 scale images. For each epoch we included all avail-

able Ks-band frames of the GC stellar cluster that were

taken with a close to diffraction limited adaptive op-

tics correction and showed Sgr A* flaring. We use the

reduced data presented by Witzel et al. (2012, Table

2), 2003 to mid-2010, and Eckart et al. (2013, Table 1)

and Shahzamanian et al. (2015, Table 1), 2002 to 2012.

For the remaining years, 2013 to 2015, the positions are

obtained by observing flare activity of the black hole

(see Table 12). The radial velocity data used for S2

2 ProgramIDs: 60.A-9026(A), 713-0078(A), 073.B-0775(A),
073.B-0085(E), 073.B-0085(F), 077.B-0552(A), 273.B.5023(C),
073-B-0085(I), 077.B-0014(C), 077.B-0014(D), 077.B-0014(F),

are from the AO assisted field spectrometer SINFONI

installed on the fourth unit telescope of the VLT and

taken from Gillessen et al. (2009b). The radial veloc-

ity measurements used for S38 are from Boehle et al.

(2016). The orbital fits presented in section 3 were all

exclusively done with the VLT stellar positions and the

radial velocities as mentioned before. However, when

discussing methodes to derive the relativistic parame-

ter and in particular differences in the argument of the

periapse ω starting in chapter section 4.2, we used in ad-

dition, for the stars S2 and S38, the positions published

by Boehle et al. (2016) for the years 1995 to 2010 and

2004 to 2013, respectively.

Table 1. Summary of observations used in addition to
Witzel et al. (2012, Table 2) and Eckart et al. (2013, Ta-
ble 1), and Shahzamanian et al. (2015, Table 1) from 2013
to 2015.

Date Camera

(UT) (Decimal)

2013 June 5 2013.425 S27

2013 June 28 2013.488 S13

2015 Aug 1 2015.581 S13

2.2. Simulations

To investigate the GR effects and measure their

strength on some of the S-stars and the stars located

within the orbit of S2, one should use a model for their

relativistic non-Newtonian orbits. Here we used first-

order post-Newtonian (PN) approximation given in Ein-

stein et al. (1938) known as Einstein-Infeld-Hoffmann

equations of motion. The PN approximation (see Wein-

berg (1972); Will (1993), also Schneider (1996)) applies

to the particles that are bound in a gravitational field

and have small velocities with respect to the velocity

of light. It is based on an expansion of the quantities

that determine the particle trajectory. Rewriting the

equation for the gravitational potential φ = −GMBH/r

of a compact mass distribution of a total mass MBH

078.B-0136(A), 179.B-0261(A), 179.B-0261(H), 179.B-0261(L),
179.B-0261(M), 179.B-0261(T), 179.B-0261(N), 179.B-0261(U),
178.B-0261(W), 183.B-0100(G), 183.B-0100(D), 183.B-0100(I),
183.B-0100(J), 183.B-0100(T), 183.B-0100(U), 183.B-0100(V),
087.B-0017(A), 089.B-0145(A), 091.B-0183(A), 095.B-0003(A),
081.B-0648(A), 091.B-0172(A)
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and allowing it to move with a constant velocity the

equation of motion of a star can be written as

dvvv?
dt

= −GMBH

c2r3
?

{
rrr?

[
c2 + v2

? + 2v2
BH − 4 (vvv?.vvvBH)

− 3

2r2
?

(rrr?.vvvBH)
2 − 4

GMBH

r?

]
− [rrr?. (4vvv? − 3vvvBH)] (vvv? − vvvBH)

}
.

(1)

MBH is the dominant mass of the BH, vvv? and rrr? are

the velocity and the radius vector of the star, and vvv•
is the velocity vector of the BH. Here we only consider

the mass of the BH since we are well inside the sphere

of influence of the SMBH and hence we assume that

the extended mass is negligible in comparison with the

mass of the BH. Reducing the equation considering a

negligible proper motion for the central BH gives us the

equation of motion in Rubilar & Eckart (2001) given by

dvvv?
dt

= −GMBH

c2r3
?

[
rrr?

(
c2 − 4

GMBH

r?
+ v2

?

)
−4vvv? (vvv?.rrr?)

]
,

(2)

which can be used in the cases that we are neglecting

the small drift motion of the BH. We modeled the stellar

orbits in Sect. 3 or Sect. 4 by integrating equations (1)

or (2) using the 4th order Runge-Kutta method with

twelve or six initial parameters respectively (i.e. the

positions and velocities in 3 dimensions).

3. STELLAR ORBITS

3.1. Astrometric accuracy

Gillessen et al. (2009b) shows that for raw positions

and linear transformations, the resulting mean one-

dimensional position error is as large as 1 mas for the

S13 NACO data.

Plewa et al. (2015) find from the average velocity dif-

ferences in radial and tangential direction that the in-

frared reference frame shows neither pumping (vr/r) nor

rotation (vφ/r) relative to the radio system to within

∼ 7.0 µas yr−1 arcsec−1. Over 20 years this amounts to

an upper limit of about 0.14 mas arcsec−1, i.e. typically

to 0.1 mas to 0.2 mas across the central 1 arcsec diam-

eter cluster of high velocity stars. This means that the

combined error due to the residual distortions, the rota-

tion, and the transformation across the central S-cluster

is less than about 1.2 mas.

The accuracy with which an individual stellar posi-

tion can be derived via a Gaussian fit is better than a

tenths of a pixel and ranges for the bright S-cluster stars

between 1 and 2 mas per single epoch. Obtaining the

position of Sgr A* is complicated because of the crowd-

ing in the field and in particular due to the presence of

S17 over a few years of our epochs. Hence, the accuracy

for deriving the position of Sgr A* typically ranges from

1 – 2 mas for the bright flare events and up to about

6 mas (about 1/2 pixel in S13 camera) for fainter flare

emissions and in presence of S17. Plewa et al. (2015)

have shown that for sufficiently bright stars accuracies

of a fraction of a milliarcsecond can be achieved (see

below).

3.2. Connection of the NIR and radio reference frames

All instrumental imaging parameters up to second or-

der are extracted for each individual data set. Here we

assumed that the pixel coordinates of the i−th star (xi,

yi) can be written in terms of the corrected offset coor-

dinates (∆xi, ∆yi) from the base position as

xi = a0 + a1∆xi + a2∆yi + a3∆x2
i + a4∆xi∆yi + a5∆y2

i

(3)

and

yi = b0 + b1∆xi+ b2∆yi+ b3∆x2
i + b4∆xi∆yi+ b5∆y2

i .

(4)

The zeroth order is the base position (a0, b0), the first

order (proportional to ∆x and ∆y and in each coordi-

nate) relates to the camera rotation angle αr and the

pixel scales ρx, ρy (in arcsec pixel−1) and the second-

order parameters (proportional to ∆x2, ∆x ∆y, and ∆y2

for each coordinate) give the image distortions. The 2

× 6 instrumental parameters (a0, b0, ..., a5, b5) are

determined for each data set by comparison to a radio

reference frame consisting of 8 maser sources with po-

sitions and proper motions tabulated by Plewa et al.

(2015). The parameters are computed by solving an

over-determined non-linear equation for these 8 stars via

the orthonormalization of the 12 × 8 matrix. Based on

this analysis we find that the fitted pixel scales and the

very small second-order distortion parameters are typi-

cally < 10−3 of the first-order scaling parameters. After

the correction for the instrumental parameters the final

position fit errors ranged from 1 to 10 mas per data set

for the bright maser stars.

For each year we choose a wide field (27 mas pix−1

scale) image containing the maser sources and the clos-

est high resolution (13 mas pix−1 scale) image in which

the S-stars and Sgr A* can best be separated. Via the

formalism given above we then match the higher resolu-

tion 13 mas pixel−1 scale positions onto the larger field

27 mas pix−1 scale images containing the infrared coun-

terparts of the maser sources. The corresponding frames
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are connected using 6 overlap sources for which the off-

sets to Sgr A* are measured: IRS16SW (S95), IRS16C

(S97), S65, S96, S67, and S2. In a second step we use

the distortion corrected infrared positions (i.e. their pro-

jected trajectories) of the radio maser star counterparts

given by Plewa et al. (2015) to connect our positional

reference frame to the radio frame. This is done un-

der the assumption that the radio masers are quasi co-

spatial with the associated stars. Oyama et al. (2008)

and Sjouwerman et al. (2004) show that this is a reason-

able assumption as the maser spot shells are distributed

over less than 1 mas around their central stars.

As a result we find the motion of Sgr A* infrared coun-

terpart with respect to the radio rest frame. We find

that (over our baseline in time) the infrared position of

Sgr A* agrees with the radio position to within less than

1.4 mas and the proper motion is smaller than 0.3 mas

per year. Hence, this is the accuracy with which we can

connect the infrared and radio reference frame for the

central S-star cluster, that is about an order of mag-

nitude below what has been achieved by Plewa et al.

(2015), i.e., ∼ 0.17 mas in position (in 2009) and ∼ 0.07

mas yr−1 in velocity. Hence, the comparison to the ra-

dio reference frame shows that the infrared and radio

positions of Sgr A* are in good agreement and that to

the first order the S-stars are orbiting the IR counterpart

of Sgr A*.

We can compare our result with the expectations from

the input data. If we consider that, depending on the

source strength, the stellar positions have been mea-

sured off the NIR images with an accuracy of better

than 1 to 10 mas (typically better than between 0.037

and 0.3 pixels) then the uncertainty in the connection to

the radio frame is dominated by the correction for the

distortion of about 1 mas as corrected by Plewa et al.

(2015). In the following we will stay with the conser-

vative assumption of a 10 mas accuracy for the posi-

tion determination. The remaining uncertainties in the

connection to the radio frame is influenced by: 1) The

mosaicing accuracy to access the maser source in the 27

mas pix−1 fields. This process is typically affected by of

the order of 9 sources along the overlap regions between

the frames. 2) Measuring off the 8 maser sources in the

27 mas pix−1 mosaics. 3) connecting the 27 mas pix−1

scale to the 13 mas pix−1 scale data using 6 sources. We

assume that the accuracy to determine positions in the

13 mas pix−1 scale field is twice as large as in the 27 mas

pix−1 scale field. As a result the final accuracy for the

determination of a single source position is of the order

of half the accuracy reached in the single 27 mas pix−1

scale frames. i.e. between 0.5 and 5 mas. Using all 8

maser sources to determine the single epoch positions

for the proper motion measurements gives an accuracy

of at least 1.7 mas. As shown in Fig. 1 the single epoch

statistics for Sgr A* and for all 8 maser sources are in

very good agreement with this estimate. Our analysis of

the S-star orbits below shows that on the comparatively

faint S-cluster sources we achieved a positional accuracy

of 3 mas.
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Figure 1. Left: Single epoch statistics for the offset between
the infrared and radio positions of Sgr A*. The uncertainties
for the R.A. and Dec.: With respect to the median offset the
zero offset point is well included in the median deviation:
1.8 mas × 0.9 mas (thin red ellipse); the standard deviation:
2.0 mas × 1.4 mas (thick black ellipse); the equivalent geo-
metrical mean: 1.7 mas (black dashed ellipse); Right: Single
epoch statistics for all maser sources well centered on the
zero offset point. The standard deviation is 1.8 mas (black
circle).

3.3. Derivation of the positions and the orbits

The procedure described above allows us to derive the

stellar positions and the infrared position of Sgr A* with

respect to the radio rest frame. We choose only images

(33 in total) in which Sgr A* was flaring in the infrared

in order to locate it directly in our coordinate system

and have a good control of it possible motion with re-

spect to the stellar cluster. In addition to the three

candidate stars (S2, S38, and S55/S0-102), five stars

(S7, S10, S26, S30, and S65) in the vicinity of them

are selected to verify their reported positions and mo-

tions (Gillessen et al. 2009b; Plewa et al. 2015; Gillessen

et al. 2017). This allowed us to validate the quality of

the reference frame on an image by image basis. These

reference stars are chosen from the bright sources within

the central arcsec and have relatively low velocities and

almost linear motions on the sky. Moreover, they can
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be detected without any confusion or overlapping with

other sources in all years.

After locating all sources in all images, the pixel posi-

tion of the three candidate stars and five reference stars

are extracted. This is done by two-dimensional Gaus-

sian fits in the position of the isolated sources. In case of

partial overlapping of stars in some epochs, the pixel po-

sitions are obtained without Gaussian fit and therefore

larger corresponding measurement errors are considered.

S2 can be detected in all 33 images from 2002 to 2015.

S38 is probably confused with other sources in the years

before 2004 and thus we keep only 29 astrometric mea-

surements from 2004 to 2015 for it. Also S55/S0-102 is a

faint star (16 times fainter than S2 (Meyer et al. 2012))

located in a very crowded region close to Sgr A*, there-

fore it is not detectable in every image and that leaves

us with 25 measurements from 2004 to 2015.

The pixel positions are transformed into an astro-

nomic reference frame. To do so, we fit a linear equation

of motion to the five reference stars, given in Table 2,

and find the residuals in all the mosaics. We use the

mean of all the residuals from all the reference stars in

the image to correct for the image distortion and the

astronomic positions of all our sources including Sgr A*

at each corresponding image. The standard deviation

of the mean of the residuals are inserted in the uncer-

tainties of the astrometric data as the uncertainty of the

reference frame. The resulting positions are in Table 3,

Table 4, and Table 5 for S2, S38, and S0-102/S55, re-

spectively. Fitting a linear motion to the Sgr A* data

after this transformations we get

α(mas) = (1.9± 2.5)− (0.21± 0.37)× (t(yr)− 2002.578)

δ(mas) = (−0.4± 2.4) + (0.06± 0.41)× (t(yr)− 2002.578).

(5)

Figure 2 shows this linear fit compared to the previous

study done by Gillessen et al. (2009b). The linear fits

and the uncertainties of the fits were done with a boot-

strap algorithm in which we generate 50 random samples

with replacements of equal size to the observed dataset

and calculate the statistics on the sampling distribution.

We use the PN approximation discussed in Sect. 2.2

and fit our astrometric data for the candidate stars (and

simultaneously to the radial velocity in the case of S2

and S38) to the relativistic model using the minimum

χ2 method. The measurement errors (considering both

astrometric errors and reference frame errors) are scaled

in a way that the reduced χ2 = 1. The result is shown

in Fig. 3 for all candidate stars.

3020100102030
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Figure 2. Linear motion fit to the Sgr A* NIR counter-
part data (derived from Newtonian orbit fitting to all three
stars) after applying the correction described in the text in
this study (solid blue) compared to a recent study (dashed
red, Gillessen et al. (2009b)). The data point with a cross
indicating their uncertainties are the positions we derived for
the IR counterpart of Sgr A*.

Moreover, we run the Markov-Chain Monte Carlo

(MCMC) simulations using Newtonian models to find

all six orbital parameters for the candidate stars and

the gravitational potential parameters of the SMBH (in-

cluding the mass and the distance to the GC), and

their 1σ uncertainties simultaneously. We use emcee

by Foreman-Mackey et al. (2013) which is an affine-

invariant ensemble sampler for MCMC. We repeat the

simulations using one (S2), two (S2 and S38), and three

(S2, S38, and S55/S0-102) stars. Figure 4 is a part of the

results for such a simulation. The rest of the parameters

are omitted due to the readability. The histograms along

the diagonal are the marginalized distribution for each

parameter and resemble normal distributions. The rest

of the panels show 2D cuts of the parameter space. If

the posterior probability is broad then then parameter

is not well constrained. However the posterior proba-

bility is compact which means all parameters are well

constrained. There are some correlations between the

parameters, specially between MBH and R0.

We change the model afterwards to a relativistic one

using Equation (1) and repeat the simulations for the

same combinations of the candidate stars. The results

from all MCMC simulations are given in Table 6. The

errors of the parameters are the result of their distribu-

tions from the MCMC simulations. Using two and three

candidate stars reduces the uncertainties in determining

most of the parameters specially the velocity of Sgr A*

as a result of the lack of astrometric data in the lower

part of the orbit of S2 and S38. Moreover Zucker et al.

(2006) indicates that using a Keplerian model instead
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Table 2. Equation of motion of the five reference stars.

Star t0 ∆R.A. ∆Dec.

(yr) (arcsec) (mas)

S7 2002.578 (0.5146 ± 0.0026)+(-0.0040 ± 0.0001)∆t (-0.0421 ± 0.0020)+(-0.0016 ± 0.0002)∆t

S10 2002.578 (0.0552 ± 0.0023)+(-0.0045 ± 0.0001)∆t (-0.3736 ± 0.0020)+(0.0037 ± 0.0002)∆t

S26 2002.578 (0.5105 ± 0.0027)+(0.0060 ± 0.0001)∆t (0.4296 ± 0.0020)+(0.0016 ± 0.0004)∆t

S30 2002.578 (-0.5434 ± 0.0024)+(-0.0001 ± 0.0003)∆t (0.3806 ± 0.0021)+(0.0036 ± 0.0002)∆t

S65 2002.578 (-0.7575 ± 0.0034)+(0.0023 ± 0.0006)∆t (-0.2684 ± 0.0033)+(-0.0015 ± 0.0006)∆t

0.30.20.10.00.1
∆R.A. (")

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

∆
D

e
c.

 (
")

S2

S38

S0-102/S55

Figure 3. Best relativistic fit orbit of the candidate stars using equation (1) and the minimized χ2 method. The astrometrical
data in the reference coordinate system are represented with points with error bars (smaller than the point diameter in most
cases). The relativistic orbits of the fits are shown by solid lines. Extrapolations before and after the region for which we have
data are shown as dashed lines. The data (from 2002 to 2015) and the orbit of S2 are represented in blue, the S55/S0-102 data
(from 2004 to 2015) and its orbit are orange, the S38 data (from 2004 to 2015) and its orbit are green. The motion of Sgr A*
as derived from the relativistic fits to all three stars is shown in black.
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Figure 4. Gravitational potential parameters from the simultaneous fit to all the candidate stars (S2, S38, and S55/S0-102)
and the gravitational potential parameters including the mass and the distance to the SMBH using MCMC simulations and
Newtonian models for the stars. The remaining parameters are not shown to allow for readability of the displayed graphs. Each
panel shows a 2D cut of the parameter space. The posterior probability distribution is compact. The marginalized distribution
for each parameter is shown independently in the histograms along the diagonal. The contours show the 1σ uncertainties in the
2D histograms and the dashed lines show the 0.16, 0.5, and 0.84 quantiles in the 1D histograms.
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Table 3. S2 astrometric measurements

Date ∆R.A. ∆Dec. ∆R.A. Error ∆Dec. Error

(Decimal) (arcsec) (arcsec) (arcsec) (arcsec)

2002.578 0.0386 0.0213 0.0066 0.0065

2003.447 0.0385 0.0701 0.0009 0.0010

2003.455 0.0393 0.0733 0.0012 0.0012

2004.511 0.0330 0.1191 0.0010 0.0008

2004.516 0.0333 0.1206 0.0009 0.0006

2004.574 0.0315 0.1206 0.0009 0.0009

2005.268 0.0265 0.1389 0.0007 0.0011

2006.490 0.0141 0.1596 0.0065 0.0065

2006.584 0.0137 0.1609 0.0033 0.0007

2006.726 0.0129 0.1627 0.0033 0.0007

2006.800 0.0107 0.1633 0.0033 0.0007

2007.205 0.0064 0.1681 0.0004 0.0007

2007.214 0.0058 0.1682 0.0004 0.0008

2007.255 0.0069 0.1691 0.0010 0.0007

2007.455 0.0047 0.1709 0.0004 0.0006

2008.145 -0.0076 0.1775 0.0007 0.0012

2008.197 -0.0082 0.1780 0.0007 0.0011

2008.268 -0.0084 0.1777 0.0006 0.0008

2008.456 -0.0118 0.1798 0.0006 0.0009

2008.598 -0.0126 0.1802 0.0009 0.0010

2008.708 -0.0127 0.1806 0.0008 0.0013

2009.299 -0.0216 0.1805 0.0006 0.0009

2009.334 -0.0218 0.1813 0.0006 0.0009

2009.501 -0.0233 0.1803 0.0005 0.0008

2009.605 -0.0266 0.1800 0.0012 0.0015

2009.611 -0.0249 0.1806 0.0006 0.0008

2009.715 -0.0260 0.1804 0.0006 0.0008

2010.444 -0.0347 0.1780 0.0013 0.0021

2010.455 -0.0340 0.1774 0.0008 0.0013

2011.400 -0.0430 0.1703 0.0009 0.0017

2012.374 -0.0518 0.1617 0.0012 0.0016

2013.488 -0.0603 0.1442 0.0006 0.0019

2015.581 -0.0690 0.1010 0.0014 0.0010

of a relativistic one might systematically underestimate

R0.

For the starting point of the MCMC simulations, first

we minimize the χ2 for the orbital parameters (the ref-

erence epoch position and velocity for the relativistic

model) and only the mass of the SMBH and the dis-

Table 4. S38 astrometric measurements

Date ∆R.A. ∆Dec. ∆R.A. Error ∆Dec. Error

(Decimal) (arcsec) (arcsec) (arcsec) (arcsec)

2004.511 -0.0667 0.0576 0.0017 0.0016

2004.516 -0.0673 0.0690 0.0066 0.0065

2005.268 -0.1178 0.0583 0.0065 0.0066

2006.490 -0.1544 0.0558 0.0065 0.0065

2006.584 -0.1600 0.0613 0.0073 0.0078

2006.726 -0.1684 0.0550 0.0009 0.0008

2006.800 -0.1690 0.0549 0.0011 0.0009

2007.205 -0.1851 0.0513 0.0005 0.0008

2007.214 -0.1853 0.0506 0.0005 0.0008

2007.255 -0.1807 0.0524 0.0010 0.0007

2007.455 -0.1898 0.0474 0.0005 0.0065

2008.145 -0.2058 0.0363 0.0009 0.0013

2008.197 -0.2065 0.0359 0.0008 0.0011

2008.268 -0.2049 0.0338 0.0007 0.0009

2008.456 -0.2111 0.0325 0.0008 0.0010

2008.598 -0.2141 0.0346 0.0010 0.0010

2008.708 -0.2175 0.0338 0.0010 0.0013

2009.299 -0.2315 0.0244 0.0007 0.0009

2009.334 -0.2310 0.0241 0.0007 0.0009

2009.501 -0.2344 0.0216 0.0006 0.0008

2009.605 -0.2360 0.0156 0.0012 0.0015

2009.611 -0.2350 0.0202 0.0007 0.0008

2009.715 -0.2363 0.0178 0.0006 0.0009

2010.444 -0.2415 0.0053 0.0013 0.0021

2010.455 -0.2437 0.0009 0.0009 0.0014

2011.400 -0.2425 -0.0113 0.0010 0.0017

2012.374 -0.2519 -0.0251 0.0013 0.0017

2013.488 -0.2450 -0.0409 0.0007 0.0019

2015.581 -0.2320 -0.0617 0.0016 0.0013

tance to the GC. Then we try to improve the resulting

χ2 by setting the position and the velocity of the central

mass as free parameters. The results are then used in

the code for MCMC simulations. The reference epoch

for the relativistic fits is April 2002 and for the Newto-

nian fits is July 2002. This needs to be considered when

comparing the position of the BH in the reference epoch

of the two models.

4. SIMULATIONS AND CASE STUDIES
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Table 5. S0-102/S55 astrometric measurements

Date ∆R.A. ∆Dec. ∆R.A. Error ∆Dec. Error

(Decimal) (arcsec) (arcsec) (arcsec) (arcsec)

2004.511 0.0549 -0.1552 0.0066 0.0065

2004.516 0.0711 -0.1536 0.0066 0.0065

2005.268 0.0707 -0.1437 0.0065 0.0066

2006.490 0.0731 -0.1199 0.0065 0.0065

2006.584 0.0749 -0.1220 0.0065 0.0065

2006.726 0.0790 -0.1180 0.0066 0.0065

2006.800 0.0731 -0.1169 0.0066 0.0065

2007.205 0.0835 -0.0883 0.0065 0.0065

2007.255 0.0797 -0.0763 0.0066 0.0065

2007.455 0.0784 -0.0635 0.0065 0.0065

2008.145 0.0659 -0.0346 0.0065 0.0066

2008.197 0.0641 -0.0338 0.0065 0.0066

2008.268 0.0711 -0.0309 0.0065 0.0066

2008.456 0.0692 -0.0167 0.0065 0.0066

2008.598 0.0678 -0.0144 0.0066 0.0066

2008.708 0.0620 -0.0058 0.0066 0.0066

2009.334 -0.0017 0.0358 0.0065 0.0066

2009.501 -0.0257 0.0291 0.0065 0.0066

2009.605 -0.0305 0.0243 0.0066 0.0067

2009.715 -0.0390 0.0378 0.0065 0.0066

2010.444 -0.0620 -0.0453 0.0066 0.0068

2010.455 -0.0523 -0.0404 0.0018 0.0020

2011.400 -0.0492 -0.1080 0.0066 0.0067

2012.374 -0.0345 -0.1180 0.0013 0.0029

2013.488 -0.0134 -0.1380 0.0007 0.0019

2015.581 0.0239 -0.1678 0.0016 0.0066

4.1. The case of simulated stars within the orbit of S2

The orbits of 14 stars (see Table 7) are generated using

Equation (2) by positioning them at different apoapse

distances with different velocities within the orbit of S2

and integrating the equation of motion using the 4th

order Runge-Kutta method until the next apoapse is

reached. Since the eccentricity of the orbit is not one

of the initial parameters, to be able to generate orbits

with the same eccentricities, an additional parameter

α ≡ r × v2 is introduced which has a linear correlation

with the eccentricity. If the total energy does not re-

main constant, the orbit gets stretched over time and

the next apoapse will not be equal to the first one and

consequently the resulting orbit will fail to be suitable

for the purpose of this study. Hence, in order to keep

the energy constant to a desirable approximation for the

first few orbits, the time steps are considered relatively

small. The drift motion of the BH can potentially have

a large effect on the simulated orbits but small orbits

with short orbital periods have the advantage of being

immune to the possible effects of the motion of the cen-

tral mass.

Also we assume that each S-star is a single star and not

a binary or a bright component of it. Binaries can have

effects on astrometric and radial velocity measurements

and the binary disruption at the periapse can affect the

orbit of the primary. Moreover at least for S2 there is

no evidence of a secondary component in the spectra

(Eisenhauer et al. 2005; Martins et al. 2007, 2008).

Figure 5 demonstrates two different paths a star (case

7a of Table 7) will take with the same initial position

and momentum, on the sky plane, when the orbit is

purely Newtonian (red line) and when the first order

PN approximation is used. The blue/red circle shows

the periapse position of the relativistic/Newtonian orbit.

The purple points mark the position of the apoapses for

both orbits. For a Newtonian orbit the apoapse posi-

tions overlap while for a relativistic orbit there is a shift

in the apoapse position after one orbit. The orbit is ori-

ented horizontally so most of the difference between the

positions can be seen in the declination (∆Dec.) direc-

tion. The ∆Dec. of the two orbits, the dashed blue line

for the relativistic orbit and the dotted red line for the

Newtonian, and the difference between them, the solid

black line are plotted against time in the bottom panel.

As a result of the periapse shift, most of the deviation

from the Newtonian orbit happens after the periapse.

There is a peak in the plot which indicates the periapse.

However if one wants to compare the orbits at the

same phase one should plot the positions against the

mean anomaly. The middle and bottom panels in Fig.

6 show the ∆R.A. and ∆Dec. of the relativistic orbit

with a dashed blue line and the Newtonian with a dot-

ted red line with respect to their mean anomaly in units

of rad yr−1. The difference between the two lines in

each panel is shown with a solid black line. The top

panel depicts the distance between the positions of the

two cases, defined as δ =

√
(δR.A.)

2
+ (δDec.)

2
. From

one apoapse to the next the mean anomaly changes be-

tween −π < M < π. The periapse happens at M = 0.

There is no peak in the plot showing the difference in

the ∆Dec., since the two periapse happen at the same

mean anomaly but not at the same time.

As mentioned above, since all our simulated orbits are

located inside the orbit of S2, the upper limit for select-

ing the simulated case studies is the apoapse distance
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Table 6. Results of the MCMC simulations considering both Keplerian and relativistic models for the stars. Different combina-
tion of S2, S38 and S55/S0-102 were used for both models. Using two and three stars instead of only S2 reduces the uncertainties
of all parameters. Due to the facts that S38 has been observed for only half an orbit and the lack of data on S55/S0-102 radial
velocity, other combinations of these three stars lead to not well-determined parameters, therefore they are not included in this
table. The reference epochs for the relativistic and Keplerian fits are April 2002 and July 2002, respectively. This needs to be
considered when comparing the positions of the SMBH.

Keplerian Relativistic

Parameter (unit) S2 only S2, S38 S2, S38, S55/S0-102 S2 only S2, S38 S2, S38, S55/S0-102

Black hole:

MBH (106 M�) 4.78+0.73
−0.47 4.08+0.17

−0.17 4.15+0.09
−0.13 4.37+0.20

−0.14 4.16+0.02
−0.02 4.72+0.08

−0.06

Distance (kpc) 8.93+0.57
−0.44 8.14+0.13

−0.12 8.19+0.08
−0.11 8.50+0.16

−0.18 8.29+0.01
−0.01 8.53+0.07

−0.03

α (mas) 0.31+0.95
−0.73 0.21+0.04

−0.05 0.19+0.04
−0.04 −0.03+0.17

−0.14 0.03+0.07
−0.14 0.07+0.08

−0.03

δ (mas) 0.42+1.32
−0.82 0.23+0.10

−0.10 −0.16+0.03
−0.41 −0.01+0.06

−0.07 −0.40+0.04
−0.05 0.56+0.10

−0.08

vα (mas/yr) −0.21+0.36
−0.42 −0.11+0.15

−0.18 −0.03+0.05
−0.06 −0.07+0.11

−0.16 0.56+0.05
−0.03 0.19+0.12

−0.06

vδ (mas/yr) 0.13+1.02
−0.66 0.06+0.17

−0.13 0.02+0.02
−0.03 0.12+0.23

−0.15 −0.08+0.08
−0.14 0.34+0.05

−0.04

vz (km/s) −10.3+50.7
−43.0 −2.01+5.97

−7.84 0.70+1.47
−1.52 −3.17+3.46

−2.05 22.30+1.42
−2.08 18.81+4.78

−9.00

S2:

a (′′) 0.121+0.006
−0.004 0.126+0.002

−0.002 0.126+0.001
−0.001

e 0.872+0.006
−0.007 0.882+0.003

−0.004 0.884+0.002
−0.002

i (◦) 138.1+2.0
−1.8 136.38+0.77

−0.91 136.78+0.36
−0.44

ω (◦) 68.9+1.9
−1.9 71.1+1.3

−1.4 71.36+0.65
−0.84

Ω (◦) 231.9+2.8
−2.6 233.9+1.7

−1.9 234.50+0.94
−1.09

Tp (yr) 2002.27+0.04
−0.04 2002.33+0.02

−0.02 2002.32+0.02
−0.02

S38:

a (′′) 0.139+0.002
−0.003 0.140+0.001

−0.002

e 0.819+0.005
−0.005 0.818+0.005

−0.005

i (◦) 167.1+2.6
−2.6 166.22+3.1

−2.4

ω (◦) 27.5+9.8
−7.4 18.4+4.8

−5.8

Ω (◦) 106.8+9.5
−7.2 101.8+4.6

−5.6

Tp (yr) 2003.32+0.03
−0.04 2003.30+0.03

−0.04

S55/S0-102:

a (′′) 0.109+0.002
−0.002

e 0.74+0.01
−0.01

i (◦) 141.7+1.6
−1.5

ω (◦) 133.5+3.9
−3.6

Ω (◦) 129.9+4.0
−4.2

Tp (yr) 2009.31+0.03
−0.03
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Table 7. Simulated case studies generated in section 4. The second and third columns are the initial positions and velocities.
The subscripts u and l are standing for the fit to the upper and lower part of the orbit, respectively. The last column is the
periapse shift. The last row is the results for the case of S2 using the data from this study and the published data in Boehle
et al. (2016) brought together in a same coordinate system. For all cases presented here, the uncertainties were calculated by
the MCMC method.

Star ∆R.A. (vDec. , vz) Υ au al eu el ∆ω

(mpc) (103km/s) (mpc) (mpc) (rad)

1 0.07 (5.34 , 0.00) 0.120 0.0252 ± 0.0004 0.0173 ± 0.0017 0.947 ± 0.005 0.823 ± 0.024 0.586 ± 0.029

2 0.5 (2.00 , 0.00) 0.015 0.2573 ± 0.0002 0.2386 ± 0.0039 0.909 ± 0.001 0.885 ± 0.003 0.070 ± 0.001

3 0.05 (7.75 , 0.00) 0.106 0.0210 ± 0.0003 0.0166 ± 0.0012 0.915 ± 0.007 0.789 ± 0.014 0.530 ± 0.014

4 0.06 (7.07 , 0.00) 0.087 0.0269 ± 0.0002 0.0209 ± 0.0013 0.907 ± 0.004 0.788 ± 0.012 0.434 ± 0.016

5 0.04 (10.00 , 0.00) 0.095 0.0185 ± 0.0002 0.0154 ± 0.0005 0.871 ± 0.004 0.735 ± 0.008 0.480 ± 0.012

6a 0.06 (6.45 , 5.00) 0.061 0.0300 ± 0.0006 0.0260 ± 0.0021 0.840 ± 0.005 0.741 ± 0.019 0.301 ± 0.023

6b 0.06 (8.16 , 0.00) 0.061 0.0300 ± 0.0002 0.0259 ± 0.0007 0.850 ± 0.002 0.748 ± 0.001 0.312 ± 0.008

7a 0.05 (8.00 , 6.00) 0.056 0.0262 ± 0.0003 0.0232 ± 0.0013 0.814 ± 0.008 0.705 ± 0.011 0.279 ± 0.020

7b 0.05 (10.00 , 0.00) 0.056 0.0262 ± 0.0001 0.0238 ± 0.0005 0.803 ± 0.003 0.702 ± 0.005 0.294 ± 0.006

8 0.07 (8.45 , 0.00) 0.039 0.0379 ± 0.0001 0.0355 ± 0.0008 0.786 ± 0.003 0.712 ± 0.008 0.200 ± 0.008

9 0.10 (7.07 , 0.00) 0.027 0.0554 ± 0.0002 0.0624 ± 0.0011 0.766 ± 0.002 0.716 ± 0.007 0.138 ± 0.006

10 0.05 (10.95 , 0.00) 0.044 0.0278 ± 0.0001 0.0258 ± 0.0004 0.731 ± 0.003 0.644 ± 0.005 0.232 ± 0.006

11a 0.06 (8.00 , 6.00) 0.037 0.0332 ± 0.0002 0.0299 ± 0.0021 0.755 ± 0.005 0.654 ± 0.003 0.163 ± 0.005

11b 0.06 (10.00 , 0.00) 0.037 0.0337 ± 0.0002 0.0317 ± 0.0006 0.724 ± 0.005 0.650 ± 0.007 0.194 ± 0.005

12 0.08 (9.35 , 0.00) 0.022 0.0479 ± 0.0004 0.0479 ± 0.0014 0.653 ± 0.004 0.630 ± 0.004 0.112 ± 0.012

13 0.09 (9.43 , 0.00) 0.017 0.0561 ± 0.0001 0.0553 ± 0.0003 0.589 ± 0.002 0.558 ± 0.003 0.086 ± 0.005

14 1.00 (3.00 , 0.00) 0.001 0.6597 ± 0.0001 0.6494 ± 0.0007 0.514 ± 0.001 0.501 ± 0.001 0.020 ± 0.006

S2 - - 0.0007 4.6256 ± 0.0053 4.6140 ± 0.0317 0.892 ± 0.002 0.888 ± 0.003 0.002 ± 0.005



14 Parsa et. al

20100102030405060

∆R.A. (µpc)

20

10

0

10

20

∆
D

e
c.

 (
µ
p
c)

0.0 0.5 1.0 1.5 2.0 2.5

time (days)

20

0

20

∆
D

e
c.

 (
µ
p
c)

−0.50

−0.25

0.00

0.25

0.50

∆
D

e
c.

 (
m

a
s)

−0.500.000.501.001.50
∆R.A. (mas)

−0.50

0.00

0.50

∆
D

e
c.

 (
m

a
s)

Figure 5. Comparison between the Newtonian and the rela-
tivistic orbits (case 7a of Table 7). Top panel shows the rela-
tivistic/Newtonian orbit in a blue/red line. The blue/red cir-
cle shows the periapse position of the relativistic/Newtonian
orbit. The purple points mark the apoapses. Bottom panel
shows the declination (∆Dec.) of the two orbits and the dif-
ference between them against time, since (as a result of the
orientation of the orbit) most of the deviation from a New-
tonian orbit happens in this direction. The dashed blue line
is the ∆Dec. of the relativistic orbit and the dotted red line
is the ∆Dec. of the Newtonian orbit and the solid black line
is the difference between them. Note that the peak is at the
periapse.

of S2 (ra ' 0.234′′). We disregard the orbits with peri-

apse distances smaller than the tidal disruption radius

near Sgr A*, since main-sequence stars like S-stars can-

not exist within this radius. The tidal radius for the

stars in the GC is defined as rt ∼ R? (MBH/M?)
(1/3) '

85 µarcsec given in Alexander (2005) for a star of mass

M? = 1 M�, a radius of R? = 1 R�, and a SMBH mass

of MBH = 3.5 × 106 M�. The mass of the SMBH is

estimated to be ∼ 4.3 × 106 M� in this study, thus the

tidal radius is rt ∼ 90 µarcsec.

The distribution of these simulated stars compared to

the distribution of the detected S-stars is depicted in Fig.

7. The S-stars are shown with red circles while the simu-

lated stars are shown with blue circles in the semi-major

axis versus eccentricity (top panel) and semi-major axis

versus periapse distance (bottom panel) plots. S2, S38,

and S55/S0-102 are shown with orange circles and la-

belled.
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Figure 6. Comparison between the Newtonian and the rel-
ativistic orbits (case 7a of Table 7) as a function of orbital
phase. The middle and bottom panels show the ∆R.A. and
∆Dec. of the orbits demonstrated in Fig. 5 with respect to
their mean anomaly in units of rad yr−1. The zero mean
anomaly (M) is the periapse and −π and π are the first and
second apoapses. The relativistic orbit is dashed blue and the
Newtonian one is dotted red and the difference between the
two in each panel is shown with a solid black line. The black

solid line in the first panel shows
√

(δR.A.)2 + (δDec)2),
which is the distance between the positions of the two cases.

The stars for our highly relativistic case studies cover

a similar range in eccentricities as the S-stars and orbital

axis sizes below what is found for the S-stars. With this

coverage we start developing a method to estimate and

predict how relativistic are the orbits of stars after ob-

serving them for just one orbit using only astronomical

data. We should keep in mind that our main goal is

to find a correlation between the theoretical relativistic

and the observational parameters.

4.2. Developing methods to measure the PN effects

For developing a method to measure the strength of

the PN effects, first we have to find a relatively easy-to-

measure observable that changes noticeably by these ef-

fects. In search for such an observable which also enables

us to exploit the uncertainties in the orbital fitting, we

employ a concept similar to that of the squeezed states.

4.2.1. Squeezed states

In our framework of orbital fitting we consider a

squeezed state as any state in which an uncertainty prin-

ciple is fulfilled and saturated. As a precondition for

this, we need the product of two quantities α and β to

be larger than but very close to a minimum limit

α× β ≥ ε . (6)



15

10-2 10-1 100

1− e

10-1

100

101

102

a
 (

m
p
c) S2

S0-102
S38

Case studies
S-stars

10-3

10-2

10-1

100

a
 (

")

10-3 10-2 10-1 100 101 102

rp (mpc)

10-2

10-1

100

101

102

103

a
 (

m
p
c)

S2 S0-102
S38

Case studies
S-stars

10-3

10-2

10-1

100

101
a
 (

")

10-4 10-3 10-2 10-1 100
rp (")

Figure 7. Distribution of the S-stars with determined orbits
(red circles) and the possible cases that might exist closer to
SMBH presented here and listed in Table 7 (blue circles).
In the top panel we plot semi-major axis against eccentric-
ity and in the bottom panel we plot semi-major axis against
periapse distance. S111 is not shown here since its orbit is
hyperbolic. S2, S38, and S55/S0-102 are shown with orange
circles and are labeled. The semi-major axis and the eccen-
tricity of all the S-stars except S2, S38, and S55/S0-102 have
been taken from Gillessen et al. (2017, Table 3).

In this context the term uncertainty implies that the

fitting procedure allows a considerable portion of the

measurement uncertainties to be shifted back and forth

between the two quantities. Then we consider the re-

sult of the fitting procedure as a state that allows us to

squeeze the uncertainties into one of the variables.

If we set α = e−χ
2
l and β = e−χ

2
u with χ2 being the

weighted sum of the squared errors as a result of fit-

ting an elliptical orbit to the observational data, then

e−χ
2

describes the goodness of the fit or its likelihood

to represent the orbit well. The subscripts u and l in

this paper denote the upper and lower parts of the orbit

respectively. Hence, we write

e−χ
2
l × e−χ

2
u ≥ e−χ

2

(7)

or

χ2
l + χ2

u ≥ χ2. (8)

We can now separate the fitting errors contributed

from the random uncertainties of the measurement (sub-

script r) and contributed from the misfit of the orbital

shape if it is not a perfect ellipse (subscript s). The in-

equality (8) is true (i.e. the inequality sign is justified)

if we set χ = χlu,r which describes the overall goodness

of the combined upper and lower orbital fit just based

on the random measurement uncertainties so,

χ2
l,s + χ2

u,s + χ2
l,r + χ2

u,r ≥ χ2
ul,r. (9)

The inequality is to a large part compensated for if we

include on the right side of the equation the goodness of

the combined upper and lower orbital fit just based on

the mismatch of the overall orbital shape

χ2
l,s + χ2

u,s + χ2
l,r + χ2

u,r ∼ χ2
ul,s + χ2

ul,r. (10)

If we assume that the measurement uncertainties for

the upper and lower part of the orbit are similar, χ2
u,r ∼

χ2
l,r, then we can write

χ2
lu,r = χ2

l,r + χ2
u,r ∼ 2× χ2

l,r. (11)

For a global fit to the entire orbit the uncertainties are

distributed well between the upper and lower part of the

orbit and we assume that the measurement uncertainties

are similar, χ2
u,s ∼ χ2

l,s:

χ2
lu,s = χ2

l,s + χ2
u,s ∼ 2× χ2

l,s ∼ 2× χ2
u,s. (12)

However, if we exclusively fit the lower or upper part

of the orbit well, the situation changes. If the measure-

ments are very precise then on one side the uncertainties

due to the mismatch of the shape may become dominant

and much larger than the random uncertainties. As can

be seen in Figs. 8 and 9 this may be relevant the for

relativistic orbits. In this case, the ellipses fitted to the

lower part of the orbit have systematically lower ellip-

ticities and semi-major axes. If fitting one side only the

uncertainties due to a mismatch of the orbital shape will

be concentrated (squeezed) to the orbital section on the

opposite side and we find:

if χ̃2
l,s −→ 1 then χ̃2

u,s −→ ∼ 2× χ2
u,s > 1. (13)
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if χ̃2
u,s −→ 1 then χ̃2

l,s −→ ∼ 2× χ2
l,s > 1. (14)

Here, χ̃2
l,s and χ̃2

u,s are the squeezed χ2-values one ob-

tains after the fit to only one side of the orbit. Therefore,

the ratio between χ2
u,s or χ2

l,s and these two quantities

can be used to decide on the degree to which the orbit

is dominated by relativistic effects. Figure 10 demon-

strates the correlation between Υ and one of these ra-

tios (χ2
u,s/χ̃

2
u,s) for the cases in Table 7. If χ2

u,s ∼ χ2
l,s

then we expect 1/2 for the ratio (equation (13)), but for

more relativistic cases χ̃2
u,s gets even larger than 2×χ2

u,s.

As we go to more Newtonian cases, the ratio approches

unity since the systematic differences between the upper

and the lower parts of the orbit disappear. The best fit

describing the correlation is

χ2
u,s/χ̃

2
u,s = e(−16.23±0.13)Υ. (15)

However, squeezing the goodness of fit to only one side

of the orbit has consequences for the orbital elements.

For an ellipse we know

e =

√
1−

(
b

a

)2

, (16)

where e is the eccentricity, a is the semi-major and b is

the semi-minor axis of the ellipse. Equation (16) shows

that deviations of the overall orbital shape from an el-

lipse will become apparent in the misfit of the semi-

major axis and eccentricity, if we fit only to the lower

or upper half of the orbit, respectively. Such deviations

from Newtonian ellipses are expected if the orbits are

influenced by relativistic effects or an additional smooth

or granular extended mass distribution. The differences

can be expressed as ratios of parameters al/au and el/eu.
Here, again the subscripts indicate for which orbital sec-

tion the fit was optimized.

The method we present can be compared to a method

by Angélil & Saha (2014) to show the relativistic effects

on the argument of the periapse ω. The predicted peri-

center shift for S2 during its Sgr A* flyby in 2018 will

amount to about 11′ (for a semi-major axis of 0.126′′, an

eccentricity of 0.88, and a BH mass of 4.15 × 106 M�),

but Angélil & Saha (2014) point out that it does not

occur smoothly. They find that the difference in ω from

the pre- to post-periapse part of the orbit occurs almost

in a step at each pericenter passage. This method is ba-

sically equivalent to a measurement of the periapse shift

using the two halves of the orbit before and after the

periapse.

With the ratios al/au and el/eu our method uses the

orbital differences in the radial direction (see Fig. 8)
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Figure 8. Comparison between the methods described in
Sect. 4.2.1 for observation of the relativistic effects by means
of measuring the changes in the orbital parameters in two
halves of the orbit.

and we exploit the folding symmetry along the semi-

minor axis (as expected from a Newtonian motion) while

Angélil & Saha (2014) make use of the folding symmetry

of the orbit along the semi-major axis. Hence, their

method corresponds to squeezing the goodness of the

orbital fit to the pre-/post-periapse part of the orbit

(Fig. 8) and therefore can also be described using the

formalism we present here.

The rapid change of ω can in principle be derived us-

ing only small sections of the pre-/post-periapse part of

the orbit. However, one still needs the information on

the full orbit, as the orbital solutions need to be de-

rived in the same orbital plane in oder to represent the

progressing periapse shift precisely. Using elliptical fits

to all or most of the upper/lower or pre-/post-periapse
part of the orbit, we ensure that the entire orbit within

its plane is represented in a as complete as possible way.

4.2.2. Comparison of methods

In order to illustrate the al/au and el/eu ratios

method and the ∆ω method, we consider two full orbits

of the case 7b from Table 7 (see Fig. 9). The apoapses

and periapses are marked by blue and violet circles re-

spectively in the left panel. The simulated data points

shown with yellow circles make a full closed orbit on the

sky in the middle panel. These data points are gener-

ated after equal time intervals. We fit an ellipse to the

upper half of the data, demonstrated with a red solid

ellipse in the right panel. Subsequently, we fit another

ellipse to the lower half of the data, shown with a cyan

solid ellipse in the same panel.
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Figure 9. Example of the method described in section 4.1. Left panel: Two full orbits of the example star with the blue
circles marking the three apoapses and the violet circles marking the two periapses. These orbits are also shown with dashed
lines in the middle and right hand panel. Middle panel: The observed data points on the sky plane shown in orange circles are
considered to be part of a closed orbit. The observations are assumed to have taken place after equal time intervals. The data
points have larger separations around the periapse due to the higher velocity compared to the rest of the orbit. Right panel:
The red curve shows the elliptical fit to the upper half of the observed data points and the cyan curve shows the elliptical fit to
the lower half. The location of the SMBH at the center is marked with a black cross in all figures.
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l
→1 for the case studies in Table 7.

We repeat these steps for all our case studies and re-

port the different values for the semi-major axis and

eccentricity of the two halves in columns 5 to 8 of Ta-

ble 7. The elliptical orbits and the orbital elements are

obtained by a χ2 fit to the data points using the L-

BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno) minimization method. In order to estimate a

value for the uncertainty of the measurement of each

data point in the fits, we use the standard deviation of

all the upper or lower half of the data points considering

no mean displacement from a Newtonian orbit for half

of the orbit, and an approximate mean displacement of

a∆ω/4 for the other half. Here ∆ω is the periapse shift.

The uncertainties include misfitting ellipses to the upper

and lower parts of the orbit. The time intervals between

the data points are in accordance with the scale of the

orbit and consequently its orbital period which can be

between an hour and a month.

Next, we apply the ∆ω method discussed in Sect.

4.2.1 by fitting ellipses to the pre- and post-periapse

halves of the orbits of the case studies. This method is

illustrated for the case 7b from Table 7 in Fig 11. We get

the same values for all the orbital elements except the

argument of the periapse for the two fits, as expected.

The difference in ω of the two halves for each case study

is reported in the last column of Table 7.

Without loss of generality all our case studies are lo-

cated on the sky plane, i.e. they have no velocity compo-

nent in the z direction. For the sake of completeness, we

add a z velocity component to three of the case studies

and consequently generate three cases with inclination

(6a, 7a and 11a in Table 7). Applying the two methods

on these cases, assuming a real situation in which we do

not have any information about the inclination but the

radial velocity, includes few more steps. Before fitting

the ellipses for each of them first we have to fit a simple

Newtonian orbit to the astrometric and radial velocity

data to find the inclination and the line of nodes of the

orbit. Then using the inclination and the argument of

the periapse we have to correct the astrometric data for

inclination. Afterwards we can continue with rest of the

steps. However, as a consequence of these additional

steps, we have additional sources of uncertainty. There-

fore, we choose not to use theses cases for our analysis.

4.3. The case of S2

To see how well the methods work, we apply them to

the data of one full S2 orbit. Since our VLT data from

2002 to 2015 does not allow us to cover one full orbit
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Figure 11. Method by Angélil & Saha (2014) for the obser-
vation of the relativistic effects by means of measuring the
changes in the argument of the periapse ω in two halves of
the orbit.Here, applied to the case 7b from Table 7. Upper
panel: The data points from two halves of the orbit, before
and after the periapse, and their fits are shown by cyan and
green lines, respectively. The periapse shift is the angle be-
tween the two major axes. Bottom panel: The instantaneous
argument ω of periapse for one period. The cyan and green
dashed lines are the argument of the periapse of the fit to the
respective half of the orbit. The instantaneous argument of
the periapse ωinst at each point of an orbit is the argument
of periapse of a Newtonian orbit with the same position and
momentum at that specific point. The quantity ωinst is not
an observable.

and since we lack sufficient data on the lower half of the

orbit, we add the data provided by Boehle et al. (2016)

from 1995 to 2010 to the data presented in this work.

However the two data sets do not share the same refer-

ence coordinate system. We use the approach discussed

in Gillessen et al. (2009a) to bring the two data sets into

a single coordinate system by assuming that they differ

only in the position of the origin and the zero velocity.

Therefore, we add four additional parameters: ∆x, ∆y,

∆vx, and ∆vy to our parameters. Also, we make use

of the PN approximation and the astrometric data pre-

sented here and in Boehle et al. (2016), and the radial

velocity data in the latter and Gillessen et al. (2009a).

Finally we fit simultaneously for the S2 orbital param-

eters, the gravitational potential parameters, and the

new parameters to bring the two data sets into a single

coordinate system. The fit results for these four new

parameters are

∆x = +2.95± 0.25 (mas)

∆y = −1.08± 0.48 (mas)

∆vx = −0.21± 0.04 (mas/yr)

∆vy = −0.44± 0.09 (mas/yr). (17)

These values refer to the epoch of May 1995, which is

chosen as the zero time of the orbital fit. The uncertain-

ties are the results of MCMC simulations. Using these

parameters and applying them on the data from Boehle

et al. (2016), we have sufficient data covering all quar-

ters of the orbit to apply the two methods on S2. The

resulting semi-major axis, eccentricities, and ∆ω for S2

using the two methods are in the last row of Table 7.

Figure 12 compares the Newtonian (dotted red) and

relativistic (dashed blue) fits to the combined data of S2

from 1995 to 2015. It shows the difference between the

two models (black solid line) in the current period and

indicates that the difference will manifest itself specially

during and after the periapse in 2018.

Although Gillessen et al. (2009a) reject the probabil-

ity of a rotation between the VLT and Keck data sets

and we follow their suggested approach in Sect. 4.3 for

bringing the two data sets into one coordinate system,

adding a parameter for rotation in our calculation in or-

der to put a limit for a possible rotation is not entirely

unjustifiable. Such a rotation (if it existed) can have an

undesirable effect particularly on the derivation of ∆ω of

S2 in Sect. 4.3 for the reason that we used only the data

provided by the Keck data set for the pre-periapse fit.

As a result we performed a separate MCMC simulation

in which we introduced a parameter θ in addition to our

four initial parameters (∆x, ∆y, ∆vx, ∆vy) for describ-

ing the difference in the coordinate systems. Without

loss of generality we implemented the center of rotation

at the location of Sgr A* and looked for the possible

value of θ for a Newtonian orbital fit to the combined

S38 data using the data provided in Boehle et al. (2016)

from 2004 to 2013. The perpendicular orientation with

respect to S2 on the sky make S38 ideal for testing for a

rotation between the two data sets. Irrespective of the

expected small periapse shift of the S38 orbit of only

about 6′ this source is ideally suited to probe relative

rotations of the data set with respect to each other as

the highest quality comparison data are all on the north-

ern, i.e., on a single side of the orbit. We find an upper

limit for the rotation of 0.002′ for S38 orbital fit. If we

repeat the procedure for the combination of the S2 and

S38 data (again only on the sections of the orbits covered
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by both data sets) we find an upper limit on the rotation

value of 0.1′. The expected periapse shift of S2 is about

11′ (for a semi-major axis of 0.126′′, an eccentricity of

0.88, and a BH mass of 4.15 × 106 M�). Since we re-

gard the very small rotational values as upper limits we

did not apply them and continue the analyses with the

results from the MCMC simulations described before.

Thus we conclude that our combination of the two data

sets is ideally suited to probe for relativistic effects on

the orbital elements.
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Figure 12. Comparison between the relativistic and the
Newtonian fit to the astrometric and the radial velocity data
of S2 from 1995 to 2015. The top panel shows the right
ascension (∆R.A.) and bottom panel shows the declination
(∆Dec.) versus time. The time covers one period of the or-
bit. The green circles are the data points within this period.
The blue dashed lines are the relativistic fit. The dotted
red lines represents the Newtonian fit. Both fits include the
models predictions until the future periapse and beyond. As
expected, most of the differences (shown with black solid
lines) between the two orbits occur after the periapse. The
peaks in the solid black lines indicate the periapse.

5. RESULTS

5.1. The simulated case studies

A measure of the strength of the PN effects is the

relativistic parameter at the periapse, Υ ≡ rs/rp (see

also Zucker et al. (2006); Alexander (2005); Ghez et al.

(2008)). Other suggested parameters are the dimension-

less periapse distance, the periapse shift, and the speed

at the periapse in units of the speed of light β = vp/c,

with vp being the velocity during the closest approach

to the BH (Zucker et al. 2006). It is a justifiable param-

eter for determining the approximate magnitude of the

components of the Schwarzschild metric outside a single

object in vacuum (Baker et al. 2015). Υ is by definition

dependent on the orbital shape, i.e. the semi-major axis

and eccentricity. The inverse correlation between Υ, the

semi-major axis (and consequently the orbital period)

and the eccentricity are demonstrated in Fig. 13. The

solid lines are e = 0.9 – 0.5 from top to bottom in the

left panel, and a = 0.02 – 0.06 mpc (∼ 0.5 – 1.5 mas), a

= 0.27 mpc (∼ 6.7 mas), a = 1 mpc (∼ 25 mas) and a

= 5 mpc (∼ 125 mas) from top to bottom in the right

panel. The circles represent the simulated stars in the

plane of the sky and the diamonds show the simulated

stars with inclinations (corrected for) with respect to

the sky plane, listed in Table 7. The dashed line shows

the Υ of S2 for both panels which is the minimum Υ in

this study.

The PN effects should depend only on Υ, according

to the strong equivalence principle. However, this is not

the case for other theories of gravitation so one should

investigate the dependency of these effects on multiple

parameters (Zucker et al. 2006). In this study our main

candidate for a parameter that can describe the strength

of the PN effects in an orbit is Υ. Figure 14 shows the

correlation between Υ and ratios of the orbital param-

eters al/au and el/eu, as described in Sect. 4 for the

stars in Table 7.

As a result of the dependency of Υ= rs/(a(1− e)) on

the eccentricity e and the semi-major axis a, one might

expect that in order to find a clear correlation between

Υ and the al/au and el/eu ratios (see Fig. 13), a param-

eterization is necessary. It can be understood from Fig.

13 and from the definition of Υ that the effects of a and

e on Υ are only dominant on small scales and for large

eccentricities. These effects are negligible for sufficiently

large orbits with low eccentricities. If we consider that

the eccentricity of the stellar orbits typically ranges be-

tween 0.4 and 0.9 then this will result in the variation of

Υ by a factor of 6. The possible semi-major axis for the

orbits with rp between the tidal disruption radius and

the rp of S2 ranges between ∼ 0.01 mpc (∼ 0.025 mas)

and ∼ 5 mpc (∼ 125 mas). For semi-major axis changes

between these values, Υ varies by a factor of 500. How-

ever, in the al/au and el/eu ratios their dependencies on

e and a, respectively, cancel out almost entirely. As a

result, the correlation between Υ and the two ratios in

Fig. 14 show only a little scattering of the data around

the calculated curves.

Figure 14 shows that the al/au and el/eu ratios get

smaller as the orbit gets more relativistic (i.e. Υ in-

creases). Which means, for all relativistic orbits, the fit

to the upper half has a larger semi-major axis and is

more eccentric compared to the fit to the lower half, as

expected. Also, as Υ goes to zero, both ratios approach

unity since less and less deviation from a Newtonian or-
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Figure 13. Correlation between the relativistic parameter Υ and the orbital parameters the semi-major axis in the left panel
and the eccentricity via (1− e) in the right panel. The solid lines are e = 0.9− 0.5 in steps of 0.1 from top to bottom in the left
panel. In the right panel from top to bottom the solid lines stand for a = 0.02 – 0.06 mpc (∼ 0.5 – 1.5 mas), a = 0.27 mpc (∼
6.7 mas), a = 1 mpc (∼ 25 mas) and a = 5 mpc (∼ 125 mas). As listed in Table 7 the circles represent the simulated stars on
the sky plane and the diamonds show the simulated stars with (corrected for) inclinations with respect to the sky plane. S2 is
shown with a star. The dashed line shows the lower limit for choosing the case studies which is the expected theoretical value
of ΥS2 = 0.00065 in both panels. The colorbars show the eccentricity of the orbits in the left panel and the semi-major axis in
the right panel.

bit is anticipated. The best fits after trying few models

to describe the correlations are

al/au = (−3.14± 0.18) Υ(1.15±0.02) + 1 (18)

and

el/eu = (−0.41± 0.01) Υ(0.44±0.01) + 1 . (19)

Using the periapse distance instead of the relativistic

parameter will not give us any new information, since

rp = rs/Υ. According to Zucker et al. (2006), the stars

with smaller periapse passages and consequently larger

velocities at the periapse, i.e. larger βp, are in orbits

with stronger PN effects. Also, for highly eccentric or-

bits with rp � a and Υ � 1 (approximately Newto-

nian), Zucker et al. (2006) show β ∼
√

Υ. Here, we also

find β = (0.713± 0.003)
√

Υ as can be seen in Fig. 15.

5.2. The case of S2

We also apply the analysis to data of the S-star S2.

The orbit of this star shows the highest ellipticity and

gives us a chance of deriving the relativistic parame-

ter. The results for a and e from the fits to the upper

and lower halves of the combined data set of S2, given

in the last row of Table 7, are the mean and standard

deviation of the assumed normal distributions from the

MCMC simulations. However, when calculating al/au
and el/eu, since both ratios in the derived correlation

are limited to 1 (Equation (18) and (19)), we choose to

use a truncated normal distribution as the probability

density function (pdf) given by

f (x;µ, σ, a, b) =
(1/σ)φ ((x− µ) /σ)

Φ ((b− µ) /σ)− Φ ((a− µ) /σ)
, (20)

for a ≤ x ≤ b with φ being the pdf of a standard

normal distribution and Φ being the cumulative distri-

bution function. Using a change of variables and the

correlations between the observable parameters and Υ,

we can obtain the pdf of Υ. These pdfs are shown next

to the x and y-axis in the bottom panels of Fig. 14 for

S2. The solid black and dashed lines are the means and

standard deviations, respectively. They correspond to

the orange stars in both panels. Moreover the medians

and the median absolute deviations (”mad”) are shown

with blue solid and dashed lines, respectively. They cor-

respond to the blue stars with their errorbars represent-

ing the ”mad”. The median and mean values are listed

in Table 8.

The strongest cumulative relativistic effect is the shift

of the periapse due to a Schwarzschild black hole up to

the first order and is given by:

∆ω =
6πGMBH

c2a (1− e2)
(21)

per orbit. Hence, for the second method explained in

the previous section (∆ω method), we can repeat the ap-



21

Table 8. Relativistic parameter of S2 derived from the al/au, el/eu and ∆ω methods with and without the drift motion of Sgr
A*. The individual results are given as means (with standard deviations) and medians (with median absolute deviation). The
last two columns of each row is the mean value of the Υ from the combined al/au and el/eu methods and the ∆ω methods and
its standard deviations of the mean and the median value of the medians and its median absolute deviation.

Method al/au el/eu ∆ω Mean Median

with the drift

motion of BH:

Υ (Mean) 0.00193 ± 0.00432 0.00006 ± 0.00015 0.00048 ± 0.00099 0.00074 ± 0.00227 –

Υ (Median) 0.00405 ± 0.00199 0.00008 ± 0.00006 0.00088 ± 0.00048 0.00147± 0.00105 0.00088± 0.00080

without the drift

motion of BH:

Υ (Mean) 0.00179 ± 0.00424 0.00001 ± 0.00005 0.00048 ± 0.00099 0.00069 ± 0.00223 –

Υ (Median) 0.00392 ± 0.00194 0.00002 ± 0.00002 0.00088 ± 0.00048 0.00142 ± 0.00102 0.00088 ± 0.00086
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Figure 14. Top panels: Correlation between the relativistic parameter Υ and 1) the ratios of the orbital elements of the
elliptical fits to the lower and the upper halves of the orbit: the semi-major axis (al/au) (top left panel) and the eccentricity
(el/eu) (top middle panel) 2) the periapse shift ∆ω (top left panel), for the case studies in Table 7. S2 is represented with a star
symbol. The diamonds represent results from inclined orbits (shown corrected for inclination) and the circles represent results
from the orbits without inclination. The colorbars show the eccentricities of the orbits. The results for the corresponding orbits
with and without inclination are consistent. The correlations are demonstrated with red lines. The grey dashed curved lines
that run along the red lines are the uncertainties for the top left and top middle panels. In the top right panel the grey dashed
lines (listed from from top to bottom) are the correlation for e = 0.7, e = 0.8 and e = 0.9. The red dashed line is the correlation
for eS2 ≈ 0.87. The vertical black dashed lines in the top and bottom panels (close to the left edge of the plot in top three
panels) represent the expected value of ΥS2. The colorbars show the eccentricity of the orbits. Bottom panels: Here we zoom
into the results of the correlations for S2. The distribution of the al/au and el/eu and ∆ω are shown in the small panels next
to the y-axis. Using the change of variables, the distribution of Υ is derived and plotted next to the x-axis in both plots. The
solid black and dashed lines are the means and the standard deviations, shown with orange stars with errorbars, and the solid
and dashed blue lines are the medians and the median absolute deviations, shown with blue stars with errorbars in both panels.
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proach explained above. Once more the relation (Equa-

tion (21)) is limited only to the positive values for ∆ω.

Therefore to obtain the pdf of Υ we use the truncated

pdf of ∆ω as shown in the top left panel of Fig. 14. The

results are presented in Table 8. Since the values for

ΥS2 from al/au and el/eu are both describing the case

for folding symmetry along the semi-minor axis, we av-

eraged their results. Consequently, the final mean value

of ΥS2 is obtained by averaging the values corresponding

to the orthogonal folding symmetries. The three values

obtained for ΥS2 are obtained from methods that re-

act on statistical and systematical uncertainties of the

data in diffrent ways. The variations that affect ω act

differently on the ellipticity and the semi-major axis.

Similarly, the variations that affect the semi-major axis

may not result in a change in ω. Hence, the uncertain-

ties between the three different methods certainly do not

follow a Gaussian distribution. Therefore, the three val-

ues need to be combined by averaging the median and

”mad” rather than the mean and standard deviation.

For a full treatment of S2 the drift motion of the cen-

tral mass needs to be taken into account. This motion

should be added to the coordinates of the ellipse we are

fitting at each time step. Alternatively, the motion can

be removed from the data points. If we consider the mo-

tion from Table 6 for the relativistic fit to only S2 data

and remove it from the combined data set of S2, we get

similar results as can be seen in Table 8.

5.3. Robustness of the result

We can address the robustness of the result in different

ways. First we exclude that the result is dominated by

noise or by a drift motion of Sgr A*, then we highlight

again that it is not due to rotation between the VLT

and Keck data sets.

We assume that the orbital measurements are com-

pletely dominated by the noise and that the signal show-

ing the variations of the orbital elements is noise dom-

inated. For simplicity we consider a displacement of

an orbital section from the noise unaffected orbit due

to noise as a single degree of freedom. One can ask the

question: How likely is it to get consistent results as pre-

sented in this section assuming the noise contributions

of the upper and lower halves and the pre- and post-

periapse halves of the orbit are independent. Further-

more, we consider the collective noise contribution in

each one of these quadrants as a displacement along the

semi-major or semi-minor axis of a single orbit. While

for most of the noise realizations no significant net dis-

placement will occur, a certain fraction of these real-

izations will result in such a displacement. Hence, the

probabilities derived below are crude lower limits if one
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Figure 15. Correlation between the relativistic parameter
Υ and the relativistic β at the periapse in units of the ve-
locity of light for the simulated orbits in Table 7. The stars
with (corrected for) inclination with respect to the sky plane
are shown with diamonds and the stars on the sky plane
are represented with circles. S2 is depicted by star symbol.
The straight dashed lines show limits for orbits chosen in our
case study. These are the velocity of S2 at the periapse at
the bottom, the ΥS2 on the left, and on the right the Υ at
the periapse passage if the tidal disruption radius is reached
for the simulated orbits. The colorbar shows the theoret-
ical eccentricity of the orbit of the stars. The correlation
is demonstrated with a red line. The black dashed curved
lines are the uncertainties of the fit. The colorbars show the
eccentricity of the orbits.

seeks to explain the result as being due to the noise

only. Considering only the fraction of the noise realiza-

tions that result in a net-displacement we have a total

of 44 = 256 possibilities to combine them. Only one

combination gives a unique configuration that results in

the measured changes of ω, and the ratios al/au and

el/eu. This corresponds to a probability of 0.004, i.e.

0.4% that the result is reproduced by noise dominated

measurements.

Allowing for at least one quadrant to be displaced not

properly leaves us with 5 combinations that are consis-

tent with the observed signal. Allowing for more than 1

of the 4 quadrants to be displaced not properly gives an

inconsistent result for at least one of the quantities, ω,

or the ratios al/au or el/eu. Hence, there is only a 2%

probability (5/256 = 0.019) that the result can be ob-

tained serendipitously as a consequence of dominating

noise. Therefore, we consider it as highly unlikely that

the common systematic tendency of the change in the

orbital parameters and hence the corresponding ranges

for the relativistic parameter are the result of pure noise

only.
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It can also be argued that the change in the orbital

parameters is due to the drift motion of Sgr A*. In this

case a constant shift in ω would be injected over the

entire orbital time scale. For one orbit the drift would

be of the order of a∆ω, with a being the semi-major

axis of the orbit and ∆ω the expected periastron shift.

There would be no effect on ω for a north-south motion.

However, in east-west direction a Sgr A* proper motion

of the order of 30 µas yr−1 could explain the shift in

ω. Nevertheless, by using the PN approximation for

modelling the motion of S2 and correcting the orbital

data for the residual drift motion before deriving the

change in the orbital parameters, we can assume it as

very unlikely that the observed change in ω in sign and

amount is due to the drift motion of Sgr A*.

It can also be excluded that the change in the orbital

parameters is due to a relative rotation between the data

sampling the pre- and post-periapse halves of the orbit.

Both data sets are tied to the same VLA radio reference

frame. Moreover the classical calibration of the camera

rotation is better than 0.1 degrees, i.e. less than 6′,

and therefore about a factor of two smaller than the

expected periastron shift of about 11′ (for a semi-major

axis of 0.126′′, an eccentricity of 0.88, and a BH mass of

4.15 × 106 M�). Furthermore, Plewa et al. (2015) find

an upper limit on the temporal rotation (vφ/r) of the

infrared reference frame relative to the radio system of

∼7.0 µas yr−1 arcsec−1. Over 20 years this corresponds

to an angle of less than 0.5′, i.e. 24 times smaller that the

expected periastron shift. This is also consistent with

our result from section 4.3. A comparison of the VLT

and Keck data at times of equal coverage for S38 or for

the combination of S2 and S38 results in an upper limit

of the rotation of 0.1′, i.e., a value 110 times smaller than

the expected periastron shift. Therefore, we consider it

very unlikely that the observed change in ω in sign and

amount is due to the differential rotation effects.

6. DISCUSSION

6.1. Comparison of the results with the literature

The next periapse passage of S2, assuming the values

from all three stars simulations with Newtonian mod-

els, is in 2018.51 ± 0.22 which is in July. Boehle et al.

(2016) have predicted it to be 2018.267 ± 0.04, corre-

sponding to April. In both cases the results indicate

that the event might be optimally placed for observa-

tions. The upcoming event is highly anticipated since

the deviations from a Newtonian orbit and the gravita-

tional redshift are expected to be detectable as S2 goes

through its closest approach. However, these tests of GR

are possible only if we have a precise knowledge of the

gravitational potential parameters and the orbit. Using

the data from more than one star for orbital fitting is

one way of getting a better precision in finding these

parameters. Using multiple stars for determining MBH

and R0 has been done before. Gillessen et al. (2017) find

MBH = 4.28 ± 0.10 × 106 M� and R0 = 8.32 ± 0.07

kpc for multi-star fit. While the statistical uncertainty

of these parameters are comparable to the uncertainties

we report in our Newtonian multiple star fit, the results

reported by Gillessen et al. (2017) are in agreement with

our values to within a 2σ uncertainty (see Table 6). Sim-

ilarly, Boehle et al. (2016) measurements from Keck are

MBH = 4.02 ± 0.16 × 106 M� and R0 = 7.86 ± 0.14

kpc. To within a 1σ and ∼ 2σ uncertainty, respectively,

these quantities are in agreement with our comparable

fit results (Newtonian S2 and S38). The uncertainties we

obtain are very similar to those of Boehle et al. (2016).

The star S55/S0-102 was not selected before for mass

and distance fits due to the lack of radial velocity data.

Since we cannot constrain the Newtonian precession due

to the uncertainty of the enclosed mass within the or-

bit of S2, we need at least one more star to measure

the strength of the PN effects. S55/S0-102 has a very

short orbital period and thus a large phase coverage. It

has already passed through its periapse passage in 2009

and its next periapse time will be in 2021. Therefore,

it is the best candidate for measuring deviations from

a Newtonian orbit after S2. The parameters we derive

for Newtonian case using the combinations S2,S38 and

S2,S38,S55/S0-102 give similar results within the uncer-

tainties.

The mass and distance estimates derived for the New-

tonian and the relativistic case and being based solely on

S2 give slightly higher results that are, however, within

their larger uncertainties, still in agreement with the

multi-star solutions. They also agree very well with re-

cent estimates by Ghez et al. (2008) and Gillessen et al.

(2009b) of these quantities based on Newtonian solu-

tions for S2 only.

Also the mass and distance estimates for the S2, S38

combination in the relativistic case are in reasonable

agreement with the Newtonian solutions, while these

quantities are systematically larger in the relativistic

case for the S2, S38, S55/S0-102 solution.

The ratios for the changes of orbital parameter of S2,

al/au and el/eu, and ∆ω given in Table 7 agrees with

the study done in Iorio (2017) where time series of the

first order PN shifts of the osculating Keplerian orbital

elements are found analytically and numerically. Iorio

(2017) finds max shifts of ∆a = 30 au, ∆e = 0.003, and

∆ω = 0.2 deg for S2. Considering a semi-major axis of a

= 0.126′′and an eccentricity of e = 0.884, we get al/au =

(a−∆)/a = 0.971 and el/eu = (e−∆)/e = 0.997 which
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are in agrement with the values in Table 7. The results

described by Iorio (2017) were obtained in a deductive

way: A general relativistic theoretical scenario is used

to deduce the orbital elements and their properties as

a function of time, as one would expect them for the

special star S2 close to the SgrA* black hole. In our case

we have to proceed in an inductive way. We start with

positional and spectroscopic measurements of the three

stars (including S2) that orbit the heavy mass associated

with Sgr A*. The goal is to show that the S2 orbit

is significantly influenced by general relativistic effects.

Hence, we have to provide an (indirect) observable that

allows us to discriminate the relativistic from the non-

relativistic case, based on real data. The procedure we

developed can directly compared to and confirms the

predictions given by Iorio (2017).

6.2. Overcoming the bias in the orbital fitting

While the general agreement between the Newtonian

and relativistic fits is good, it appears that the fits still

need to be further constrained. While a Newtonian

model seems to be able to describe the trajectory of

all S-stars so far, if we expect the orbit to show any

precession at the periapse, we have to use a relativistic

model. This is due to the fact that when fitting a New-

tonian model, a small precession can be compensated

by a larger drift motion of the SMBH in the same di-

rection of the precession if we have observed the star for

only about one orbital period. Even with a relativistic

model, we need at least two stars with preferably differ-

ent orientation on the sky (like S2 and S38) to be able

to overcome this bias.

This may be achievable in the near future by includ-

ing more stars. However, using more stars that are at

larger distances to Sgr A* would only bias it towards

a Newtonian solution. What is needed is the inclusion

of more stars closer to - or at a similar distance from

Sgr A* as compared to the currently used triple. Higher

angular resolution observations with a high point source

sensitivity, e.g. with GRAVITY at the VLTI (Eisen-

hauer et al. 2011; Eckart et al. 2012; Grould et al. 2017)

or cameras at telescopes like the E-ELT (Brandl et al.

2016; Davies et al. 2016), will help reaching this goal.

6.3. Detectability of the PN effects

Although most of the deviations from a Newtonian

orbit happen during the closest approach to the SMBH,

the measurement is not an easy task since the IR coun-

terpart of the SMBH may be confused with other sources

during the periapse passage. The correlation between

Υ and the ratios al/au and el/eu (as discussed in Sect.

4.1), can provide us with an estimate of Υ after observ-

ing the star for one orbit, which can consequently result

in the prediction of rp, βp, and ∆ω. All these values

cannot be measured directly without knowledge of the

orbit.

Angélil & Saha (2014) propose to measure ∆ω in one

full orbit since ω at each instant is not observable and

one cannot simply measure it before and after the pe-

riapse. We measure this parameter by fitting elliptical

orbits to the entire S2 data before and after periapse

and derive Υ by utilizing the correlation between ∆ω

and Υ. We find the median of the resulting medians

from the three Υ distributions and its median absolute

deviation to be Υ = 0.00088 ± 0.00080. Alternatively,

since the al/au and el/eu methods use the same sym-

metry in the orbit we take the average of the medians

of the Υ distributions, i.e. the one derived from the

correlations between Υ and the ratios al/au and el/eu
considering them as one method by using their mean

value, and the Υ value from ∆ω method. We find Υ =

0.00147 ± 0.00105. Both approaches result in values

that within the uncertainties are consistent with the ex-

pected value of 0.00065 for S2 (for a semi-major axis of

0.126′′, an eccentricity of 0.88, and a BH mass of 4.15

× 106 M�). The employment of the medians of the dis-

tributions instead of their means for the combination of

the results is justified in Sect. 5.2 One might argue that

the drift motion of the SMBH might have affected our

result. A large enough north-south motion will affect

the semi-major axis of the orbit and a east-west motion

will increase or decrease the periapse shift. To investi-

gate this, we apply the correlations to the drift motion

corrected combined data of S2 and obtain the average

value of 0.00069 ± 0.00223 which is even closer to the

theoretically predicted value. The predicted drift mo-

tion is taken from Table 6 for the relativistic best fit of

S2. This means that the drift motion of Sgr A* does

not affect our result significantly and for S2 the combi-

nation of these methods can successfully give a measure

of the PN effects without going through complex rela-

tivistic fitting procedures. Our method is limited by the

fact that the data for the pre-periapse and the bottom

halves of the orbit is sparser and more uncertain before

2002 compared to the remainder of the data. This limi-

tation will be resolved only after S2 has reached another

apoapse in 2026.

Moreover, if we consider the expected value of 0.00065

for the Υ of S2, using the correlation between Υ and the

relativistic β from Sect. 5.1, we find βS2 = 0.001818

± 0.00008. If we use the derived Υ of S2 in this work

(0.00069± 0.00223) we find βS2 = 0.001873 ± 0.03027.

Both values agree with βS2 ∼ 0.02 from the simulations

of the orbit of S2.
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7. CONCLUSION

In oder to derive the mass of the SMBH Sgr A* and

the distance to the GC, we used the three stars S2, S38,

and S55/S0-102 which are currently known to be the

closest to the center. We find MBH = 4.15± 0.13× 106

M� and R0 = 8.19 ± 0.11 kpc based on Newtonian

orbital models which are in good agreement with the

recently published values. There are systematic errors

on these values due to the possibility of choosing a rel-

ativistic model instead of a Newtonian one (Gillessen

et al. 2017). The differences in MBH and R0 between

Newtonian and relativistic models (Table 6) are 0.57

×106 M� and 0.34 kpc, respectively. We expect that

the unaccounted errors in the construction of the ref-

erence frame (some of it is accounted for by includ-

ing the standard deviation of the mean of the residu-

als of the five reference stars in the astrometric errors

of the S2, S38, and S0-102/S55 described in Sect. 3.3)

to be small in comparison to these values (0.04 ×106

M� and 0.04 kpc in the calculation done in Boehle

et al. (2016)). Hence the systematic errors are domi-

nated by the model differences and our final best es-

timates are MBH = 4.15 ± 0.13 ± 0.57 × 106 M� and

R0 = 8.19± 0.11± 0.34 kpc.

We use the first-order PN approximation to simulate

the relativistic orbits for a broad range of the impact

parameters. We present two methods that utilize the

changes in the orbital parameters for measuring the rel-

ativistic parameter at the closest approach to Sgr A*.

The results from these methods determined for the sim-

ulated orbits are then applied to the orbital analysis of

S2. Consequently, we are able to determine a consis-

tent change in the orbital elements of S2 from the dif-

ferences between the orbital fits to the upper/lower and

pre-/post-periapse parts of the orbit. These changes im-
ply a relativistic parameter of Υ = 0.00088 ± 0.00080

which is within the uncertainties consistent with the ex-

pected theoretical value of Υ = 0.00065 for the star S2

orbiting Sgr A* (for a semi-major axis of 0.12600′′, an ec-

centricity of 0.88, and a BH mass of 4.15 × 106 M�). For

the changes in the argument of periapse we find a me-

dian with median absolute deviation of ∆ω = 14±7′ (or

∆ω = 14± 13′ applying the range for Υ derived above)

which is consistent with 11′, expected for S2 lowest order

periapse shift. Since the eccentricity of S2 is the largest

among the three stars, it is currently the best suited star

for the determination of the relativistic parameter.

This result must be seen in the light of the discussion

of the resonant relaxation within the central star clus-

ter close to Sgr A* (Rauch & Tremaine 1996; Alexander

2005; Hopman & Alexander 2006; Merritt et al. 2010;

Kocsis & Tremaine 2011; Sabha et al. 2012). Sabha

et al. (2012) investigate the effects of the orbital torques

on the S2 orbit due to the resonant relaxation. They find

that if a significant population of 10-solar-mass black

holes is present, that account for an enclosed mass be-

tween 103 M� and 105 M� (e.g. see Mouawad et al.

(2005); Freitag et al. (2006)), then the contributions

from the scattering will be important for the S2 tra-

jectory. The authors show that the effect for each single

orbit can be of the same oder of magnitude as the rel-

ativistic or Newtonian periapse shifts. The scatter of

this effect is large and can lead to a significant apparent

weakening or enhancement of the relativistic shift (see

Figs. 9 and 10 in Sabha et al. (2012) and the description

of the cases in their section 4). Also the effect may be

different from one orbital period to the next. Hence, the

additional contributions to the relativistic shift of the

order of 10′ or even more would indicate that a signifi-

cant population of massive (a few 10-solar-mass) objects

influences the S2 orbit.

Taken the derived relativistic parameter of Υ at face

value implies that at least over the orbital time scale

of the S2 resonant relaxation, the proper motion of Sgr

A* within the stellar cluster as well as the effect of an

extended mass are not relevant within the current mea-

surement uncertainties.

If one argues that the derived changes in the orbital

parameters of S2 are random results or dominated by the

disturbing effects discussed by Sabha et al. (2012), then

one must claim that all these effects compensate each

other such that in the sign and amount the theoretically

predicted value of the relativistic parameter is obtained

to within the 1σ uncertainties.

In future, continued single dish or interferometric

studies of the stellar orbits close to Sgr A* must be per-

formed in order to determine the relativistic parameter

of other stars and to further control the influence of the
drift motion of Sgr A*.
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